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Multiple Comparisons

The coefficients in the linear models for the poison data
set are tests of the hypothesis that the given
poison/treatment differs from the default (first) level. So
we have tests of the difference between Poison II and
Poison I and between Poison III and Poison I, but not
between Poison III and Poison II. Similarly, we have tests
of differences between each of Treatments B, C, and D
and Treatment A, but no tests of the three differences
within the the three non-default treatment levels. From
the F-statistic on each factor, we know differences exist,
but not the full list of significant differences.
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The Treatment factor has four levels and therefore six
distinct pairwise comparisons, and well as possibly other
linear hypotheses, and if we conduct lots of tests on the
four coefficients in the table, we may have false
positives. Of course a test of whether all the rates are
equal is obtainable by the F-test in drop1(). We
computed all the pairwise comparisons, but with no
control of false positives from multiple comparisons.

Note that Wald tests of any linear hypothesis can be
conducted for any type of regression model for which
asymptotically valid covariance matrices can be derived.
This includes not just linear regression, but logistic
regression, Poisson regression, and many others.
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R Package multcomp

This package allows post-hoc comparisons among levels
of factors, with adjustment to protect against false
positives. This can be important in any situation in
which comparisons of levels of factors are made when
there are more than two levels. We will eventually apply
this to the poison data and compare the uncorrected
statistics we have already computed with the
multiplicity-corrected ones.
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A linear hypothesis on a vector of coefficients β of length
p with estimates β̂ is of the form

H0 : L
⊤β = k ,

where L is a vector of numbers of length p; often L is a
contrast meaning that the sum of the entries is zero and
k is also often zero. If β̂ has estimated covariance matrix
V̂ , then the estimated variance of L⊤β̂ is L⊤V̂ L and an
approximate z-statistic for the hypothesis as stated is

z =
L⊤β̂ − k√

L⊤V̂ L
.

This can be referred to a t-distribution in linear
regression, though not always in other methods.
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Comparison with a Control
recovery {multcomp}

Recovery time after surgery.

This data frame contains the following variables

blanket

blanket type, a factor at four levels: b0, b1, b2, and b3.

minutes

response variable: recovery time after a surgical procedure.

Details

A company developed specialized heating blankets designed to help the body heat

following a surgical procedure. Four types of blankets were tried on surgical

patients with the aim of comparing the recovery time of patients.

One of the blanket was a standard blanket that had been in use already

in various hospitals.

Source

P. H. Westfall, R. D. Tobias, D. Rom, R. D. Wolfinger, Y. Hochberg (1999).

Multiple Comparisons and Multiple Tests Using the SAS System. Cary,

NC: SAS Institute Inc., page 66.
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> library(multcomp)

> data(recovery)

> recovery.lm <- lm(minutes~blanket,data=recovery)

> summary(recovery.lm)

Call:

lm(formula = minutes ~ blanket, data = recovery)

Residuals:

Min 1Q Median 3Q Max

-6.133 -1.800 0.200 2.200 4.867

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.8000 0.5792 25.552 < 2e-16 ***

blanketb1 -2.1333 1.6038 -1.330 0.1916

blanketb2 -7.4667 1.6038 -4.656 4.07e-05 ***

blanketb3 -1.6667 0.8848 -1.884 0.0675 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.59 on 37 degrees of freedom

Multiple R-squared: 0.3797, Adjusted R-squared: 0.3294

F-statistic: 7.55 on 3 and 37 DF, p-value: 0.0004619
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It looks like blanket b2 is better than b0, but we did
conduct three hypothesis tests to obtain that finding.
The F-test shows that not all the blankets are the same,
so it might be reasonable to attribute that only to b2,
but we can test that allowing for the multiple
comparisons and the correlations between the tests using
the Dunnett procedure and also obtain confidence
intervals adjusted for multiple comparisons. This is based
on the multivariate t distribution of the coefficients and
is implemented in the glht() command in the R
package multicomp.
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> recovery.mc <- glht(recovery.lm,linfct=mcp(blanket="Dunnett"))

> summary(recovery.mc)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: lm(formula = minutes ~ blanket, data = recovery)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

b1 - b0 == 0 -2.1333 1.6038 -1.330 0.456

b2 - b0 == 0 -7.4667 1.6038 -4.656 <0.001 ***

b3 - b0 == 0 -1.6667 0.8848 -1.884 0.182

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

David M. Rocke Multiple Comparisons March 11, 2025 9 / 32



> names(recovery.mc)

[1] "model" "linfct" "rhs" "coef" "vcov" "df"

[7] "alternative" "type" "focus"

> recovery.mc$linfct

(Intercept) blanketb1 blanketb2 blanketb3

b1 - b0 0 1 0 0

b2 - b0 0 0 1 0

b3 - b0 0 0 0 1

attr(,"type")

[1] "Dunnett"

> recovery.mc$rhs

[1] 0 0 0

> recovery.mc$focus

[1] "blanket"

Some attributes of an object have extractor functions, including

coef and vcov. All the components can be accessed as attributes

of the object. The three linear hypotheses require the linear vectors

L and the right-hand sides k .
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contrMat(n, type = c("Dunnett", "Tukey", "Sequen", "AVE",

"Changepoint", "Williams", "Marcus",

"McDermott", "UmbrellaWilliams", "GrandMean"),

base = 1)

Arguments

n a (possibly named) vector of sample sizes for each group.

type type of contrast.

base an integer specifying which group is considered the baseline

group for Dunnett contrasts.

This lists the types of pre-specified contrasts. Any set of linear

hypotheses can also be specified just as a matrix linfct and

right-hand side vector rhs, as we did by hand with the poison data.

A base level can be given for Dunnett comparisons, which for

general hypotheses is the focus attribute.
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recovery.lm

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.8000 0.5792 25.552 < 2e-16 ***

blanketb1 -2.1333 1.6038 -1.330 0.1916

blanketb2 -7.4667 1.6038 -4.656 4.07e-05 ***

blanketb3 -1.6667 0.8848 -1.884 0.0675 .

recovery.mc

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

b1 - b0 == 0 -2.1333 1.6038 -1.330 0.456

b2 - b0 == 0 -7.4667 1.6038 -4.656 <0.001 ***

b3 - b0 == 0 -1.6667 0.8848 -1.884 0.182

Note that the t-scores are the same, but the p-values are adjusted
for multiple comparisons so that the chance that one or more is
significant at level α in the null case is less than or equal to α. The
only hypothesis to survive the multiplicity correction is that b2 is
better than the standard, b0.
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> summary(recovery.mc,test = adjusted(type="bonferroni"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: lm(formula = minutes ~ blanket, data = recovery)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

b1 - b0 == 0 -2.1333 1.6038 -1.330 0.574796

b2 - b0 == 0 -7.4667 1.6038 -4.656 0.000122 ***

b3 - b0 == 0 -1.6667 0.8848 -1.884 0.202439

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- bonferroni method)

This method allows changing the multiplicity adjustment method. In
this case, we replace the Dunnett method, which accounts for
correlations in the tests, with the Bonferroni method, which does
not. Note that adjusted(type = "none") gives the original tests
with no multiplicity adjustment.
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.8000 0.5792 25.552 < 2e-16 *** lm

blanketb1 -2.1333 1.6038 -1.330 0.1916

blanketb2 -7.4667 1.6038 -4.656 4.07e-05 ***

blanketb3 -1.6667 0.8848 -1.884 0.0675 .

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

b1 - b0 == 0 -2.1333 1.6038 -1.330 0.456 Dunnett

b2 - b0 == 0 -7.4667 1.6038 -4.656 <0.001 ***

b3 - b0 == 0 -1.6667 0.8848 -1.884 0.182

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

b1 - b0 == 0 -2.1333 1.6038 -1.330 0.574796 Bonferroni

b2 - b0 == 0 -7.4667 1.6038 -4.656 0.000122 ***

b3 - b0 == 0 -1.6667 0.8848 -1.884 0.202439

Both Dunnett and Bonferroni protect the familywise error rate, but

Dunnett has smaller p-values because it uses the correlations of the

tests.
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> confint(recovery.mc)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Dunnett Contrasts

Fit: lm(formula = minutes ~ blanket, data = recovery)

Quantile = 2.489

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

b1 - b0 == 0 -2.1333 -6.1251 1.8584

b2 - b0 == 0 -7.4667 -11.4584 -3.4749

b3 - b0 == 0 -1.6667 -3.8688 0.5355

There is at least a 95% chance that all the true values of the
contrasts lie in their stated intervals. We can use the argument
calpha=qt(.975,37) (2.026192) to get standard, uncorrected
confidence intervals if desired.
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> confint(recovery.mc,calpha=qt(0.975,37))

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Dunnett Contrasts

Fit: lm(formula = minutes ~ blanket, data = recovery)

Quantile = 2.0262

95% confidence level

Linear Hypotheses:

Estimate lwr upr

b1 - b0 == 0 -2.1333 -5.3829 1.1162

b2 - b0 == 0 -7.4667 -10.7162 -4.2171

b3 - b0 == 0 -1.6667 -3.4594 0.1261
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> confint(recovery.lm)

2.5 % 97.5 %

(Intercept) 13.626389 15.9736107

blanketb1 -5.382914 1.1162474

blanketb2 -10.716247 -4.2170859

blanketb3 -3.459387 0.1260532

Linear Hypotheses: with standard t quantile

Estimate lwr upr

b1 - b0 == 0 -2.1333 -5.3829 1.1162

b2 - b0 == 0 -7.4667 -10.7162 -4.2171

b3 - b0 == 0 -1.6667 -3.4594 0.1261

Linear Hypotheses: with adjusted t quantile

Estimate lwr upr

b1 - b0 == 0 -2.1333 -6.1251 1.8584

b2 - b0 == 0 -7.4667 -11.4584 -3.4749

b3 - b0 == 0 -1.6667 -3.8688 0.5355

The confidence intervals from lm are individually valid, but if we consider them
to be independent the chance that at least one does not contain the true value
is 1− (0.95)3 = 0.14. We could use Bonferroni confidence intervals at 98.3%
confidence, but the Dunnett ones will be narrower because they use the
correlations of the variables.
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All Pairs Comparisons

immer {MASS}

Yields from a Barley Field Trial

Description

The immer data frame has 30 rows and 4 columns. Five varieties of barley were

grown in six locations in each of 1931 and 1932.

This data frame contains the following columns:

Loc

The location.

Var

The variety of barley ("manchuria", "svansota", "velvet", "trebi" and "peatland").

Y1

Yield in 1931.

Y2

Yield in 1932.
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> library(MASS)

> data(immer)

> immer1 <- data.frame(immer,Yield = (immer$Y1+immer$Y2))

> summary(immer.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 204.403 12.156 16.815 2.88e-13 ***

VarP 16.300 12.156 1.341 0.194983

VarS -6.517 12.156 -0.536 0.597810

VarT 47.617 12.156 3.917 0.000854 ***

VarV 9.583 12.156 0.788 0.439728

LocD -52.120 13.316 -3.914 0.000860 ***

LocGR -56.680 13.316 -4.256 0.000386 ***

LocM -7.180 13.316 -0.539 0.595705

LocUF -32.020 13.316 -2.405 0.025996 *

LocW 54.280 13.316 4.076 0.000589 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.05 on 20 degrees of freedom

Multiple R-squared: 0.8568, Adjusted R-squared: 0.7924

F-statistic: 13.3 on 9 and 20 DF, p-value: 1.216e-06
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> drop1(immer.lm,test="F")

Single term deletions

Model:

Yield ~ Var + Loc

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 8866 190.66

Var 4 10620 19486 206.29 5.9891 0.002453 **

Loc 5 42442 51308 233.33 19.1480 5.212e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> tapply(immer1$Yield,immer1$Var,mean)

M P S T V

188.7833 205.0833 182.2667 236.4000 198.3667

> sort(tapply(immer1$Yield,immer1$Var,mean))

S M V P T

182.2667 188.7833 198.3667 205.0833 236.4000

Both variety and location are significant, but it is not clear which
pairs of varieties are shown to differ. Variety T, however, has by far
the highest yield.
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S M V P T

182.2667 188.7833 198.3667 205.0833 236.4000

> immer.mc <- glht(immer.lm,linfct=mcp(Var = "Tukey"))

> summary(immer.mc)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = Yield ~ Var + Loc, data = immer1)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

P - M == 0 16.300 12.156 1.341 0.67008

S - M == 0 -6.517 12.156 -0.536 0.98242

T - M == 0 47.617 12.156 3.917 0.00675 **

V - M == 0 9.583 12.156 0.788 0.93102

S - P == 0 -22.817 12.156 -1.877 0.36064

T - P == 0 31.317 12.156 2.576 0.11336 T is not provably better than P

V - P == 0 -6.717 12.156 -0.553 0.98035

T - S == 0 54.133 12.156 4.453 0.00201 **

V - S == 0 16.100 12.156 1.324 0.67981

V - T == 0 -38.033 12.156 -3.129 0.03773 *

David M. Rocke Multiple Comparisons March 11, 2025 21 / 32



> summary(immer.mc,test=adjusted(type="none"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = Yield ~ Var + Loc, data = immer1)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

P - M == 0 16.300 12.156 1.341 0.194983

S - M == 0 -6.517 12.156 -0.536 0.597810

T - M == 0 47.617 12.156 3.917 0.000854 ***

V - M == 0 9.583 12.156 0.788 0.439728

S - P == 0 -22.817 12.156 -1.877 0.075185 .

T - P == 0 31.317 12.156 2.576 0.018029 * T is better than P

V - P == 0 -6.717 12.156 -0.553 0.586700

T - S == 0 54.133 12.156 4.453 0.000244 ***

V - S == 0 16.100 12.156 1.324 0.200289

V - T == 0 -38.033 12.156 -3.129 0.005288 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- none method)
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> confint(immer.mc)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = Yield ~ Var + Loc, data = immer1)

Quantile = 2.9932

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

P - M == 0 16.3000 -20.0850 52.6850

S - M == 0 -6.5167 -42.9016 29.8683

T - M == 0 47.6167 11.2317 84.0016

V - M == 0 9.5833 -26.8016 45.9683

S - P == 0 -22.8167 -59.2016 13.5683

T - P == 0 31.3167 -5.0683 67.7016

V - P == 0 -6.7167 -43.1016 29.6683

T - S == 0 54.1333 17.7484 90.5183

V - S == 0 16.1000 -20.2850 52.4850

V - T == 0 -38.0333 -74.4183 -1.6484
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The confidence intervals and tests that result from
uncorrected lm and other regression models are often
called Least Significant Difference = LSD tests and
intervals. When there are many levels of a factor, this
can result in false positives. One possible intermediate
choice is to use the LSD tests and intervals, but only if
the anova test for the factor is significant. This method
is sometimes called the Protected LSD. This protects
against the case where all the levels have equal effect,
but not against partial equalities. However, for some
applications this may be enough.
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Poison Example

> poison$Poison <- factor(poison$Poison)

> poison$Treatment <- factor(poison$Treatment)

> poisont.lm <- lm(invsurv~Poison+Treatment,data=poison)

> summary(poisont.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.961 2.906 15.473 < 2e-16 ***

PoisonII 7.811 2.906 2.688 0.01026 *

PoisonIII 33.274 2.906 11.451 1.69e-14 ***

TreatmentB -27.623 3.355 -8.233 2.66e-10 ***

TreatmentC -9.536 3.355 -2.842 0.00689 **

TreatmentD -22.639 3.355 -6.747 3.35e-08 ***

Residual standard error: 8.219 on 42 degrees of freedom

Multiple R-squared: 0.8441, Adjusted R-squared: 0.8255

F-statistic: 45.47 on 5 and 42 DF, p-value: 6.974e-16

Poison and Treatment are character strings in the data set, not
factors. The lm() routine automatically converts, but glht() does
not.
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> poison.Poison.mc <- glht(poisont.lm,linfct=mcp(Poison="Tukey"))

> poison.Treatment.mc <- glht(poisont.lm,linfct=mcp(Treatment="Tukey"))

> summary(poison.Poison.mc)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

II - I == 0 7.811 2.906 2.688 0.0272 *

III - I == 0 33.274 2.906 11.451 <0.001 ***

III - II == 0 25.463 2.906 8.763 <0.001 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

> summary(poison.Poison.mc,test=adjusted(type="none"))

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

II - I == 0 7.811 2.906 2.688 0.0103 *

III - I == 0 33.274 2.906 11.451 1.69e-14 ***

III - II == 0 25.463 2.906 8.763 4.96e-11 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- none method)
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> summary(poison.Treatment.mc)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

B - A == 0 -27.623 3.355 -8.233 <0.001 ***

C - A == 0 -9.536 3.355 -2.842 0.0332 *

D - A == 0 -22.639 3.355 -6.747 <0.001 ***

C - B == 0 18.088 3.355 5.391 <0.001 ***

D - B == 0 4.984 3.355 1.485 0.4551

D - C == 0 -13.103 3.355 -3.905 0.0018 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

> summary(poison.Treatment.mc,test=adjusted(type="none"))

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

B - A == 0 -27.623 3.355 -8.233 2.66e-10 ***

C - A == 0 -9.536 3.355 -2.842 0.006893 **

D - A == 0 -22.639 3.355 -6.747 3.35e-08 ***

C - B == 0 18.088 3.355 5.391 2.97e-06 ***

D - B == 0 4.984 3.355 1.485 0.144882

D - C == 0 -13.103 3.355 -3.905 0.000336 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- none method)
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> confint(poison.Poison.mc)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = invsurv ~ Poison + Treatment, data = poison)

Quantile = 2.4293

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

II - I == 0 7.8107 0.7514 14.8700

III - I == 0 33.2737 26.2145 40.3330

III - II == 0 25.4631 18.4038 32.5223
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> confint(poison.Treatment.mc)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = invsurv ~ Poison + Treatment, data = poison)

Quantile = 2.6753

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

B - A == 0 -27.6234 -36.5999 -18.6468

C - A == 0 -9.5356 -18.5122 -0.5590

D - A == 0 -22.6390 -31.6155 -13.6624

C - B == 0 18.0878 9.1112 27.0644

D - B == 0 4.9844 -3.9922 13.9610

D - C == 0 -13.1034 -22.0799 -4.1268
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Scheffé Tests and Intervals

The examples to date have controlled for a specific
number of comparisons; for example, with four
treatments, there are six possible comparisons. The
F-test in drop1() tests the hypothesis that all the group
means are the same, which implies that any linear
contrast of factor levels has a theoretical value of zero.
Tests and intervals can be based on this idea, that we
need to be protected from false positives in any (linear)
test suggested by the results of an analysis.
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Suppose we have a factor with r levels and an effect µi

associated with each level. This could be coefficients in a
regression in which the coefficient for level i is already a
comparison between level i and level 1. The assertion
that the factor has no effect in either case is the
hypothesis that µ1 = µ2 = · · · = µr . In the coefficient
case, µ1 = 0 so then all the values of µi = 0, but in any
case, if we have a contrast L, then L⊤M = 0, where M is
the vector (µ1, µ2, . . . , µr). We have the (infinite)
collection of contrasts and we want a test/interval such
that when the total null hypothesis on the factor is true,
then the chance that any test will be significant is less
than or equal to α.
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The Scheffé method uses the estimated value of the
contrast and the standard error, but instead using the
t-statistic, one uses instead Ĉ ± sĈ

√
(r − 1)Fα;r−1;df

where df is the residual degrees of freedom. So with six
types of barley in an experiment with 30 data points, the
multipier is

√
5F.05,5,20 = 3.68 instead of t20 = 2.086.

Generally, this level of protection is achieved at too high
a cost. If differences are the inferential target, the Tukey
HSD is better (with multiplier 2.518). And the protected
LSD is defensible, though it does risk nominating
differences as significant that are not truly different.
Scheffé confidence intervals can be computed for
pairwise intervals using the calpha argument and for
other contrasts can be done “by hand.”
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