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Quantitative Prediction

Regression analysis is the statistical name for the
prediction of one quantitative variable (fasting blood
glucose level) from one or more other variables (body
mass index)

[tems of interest include whether there is in fact a
relationship and what the expected change is in one
variable when the other changes
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Assumptions

Inference about whether there is a real relationship or
not is dependent on several assumptions, many of
which can be checked

When these assumptions are substantially incorrect,
alterations in method can often rescue the analysis

No assumption is ever exactly correct
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Linearity

This is the most important assumption

If x is the predictor, and y is the response, then we
assume that the average response for a given value of x
is a linear function of x

E(y) =a + bx
y=a+bx+e
e is the error or variability

Sometimes linearity is satisfied on the log scale, not on
the original scale, especially when variables (like
concentration) might range over orders of magnitude
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In general, it is important to get the model right, and
the most important of these issues is that the mean
function looks like it is specified

If a linear function does not fit, various types of curves
can be used, but what is used should fit the data

Sometimes, a linear function will fit after a data
transformation of the response, such as the log or
square root

Otherwise, predictions are biased
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Independence

It is assumed that different observations are
statistically independent

[f this is not the case inference and prediction can be
completely wrong

There may appear to be a relationship even though
there is not

Randomization and then controlling the treatment
assignment prevents this in general
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Lack of Independence
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Lack of Independence
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Note: no relationship between x and y

These data were generated as follows:
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Constant Variance

Constant variance, or homoscedacticity, means that
the variability is the same in all parts of the prediction
function

If this is not the case, the predictions may be on the
average correct, but the uncertainties associated with
the predictions will be wrong

Heteroscedacticity is non-constant variance
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Confidence and Prediction Limits

— Regression Line
— Confidence Interval for Line
— Prediction Interval
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Consequences of Heteroscedacticity

Predictions may be unbiased (correct on the average)

Prediction uncertainties are not correct; too small
sometimes, too large others

Inferences are incorrect (is there any relationship or is
it random?)
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Normality of Errors

Mostly this is not particularly important

Very large outliers can be problematic

Grap

hing data often helps

If in a gene expression array experiment, we do 40,000
regressions, graphical analysis is not possible

Significant relationships should be examined in detail
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Statistical Lab Books

You should keep track of what things you try

The eventual analysis is best recorded in a file of
commands so it can later be replicated

Plots should also be produced this way, at least in final
form, and not done on the fly

Otherwise, when the paper comes back for review, you
may not even be able to reproduce your own analysis

January 14, 2026 BIM 283 Experimental Design for BME 18



Fluorescein Example

* Standard aqueous solutions of fluorescein (in pg/ml)
are examined in a fluorescence spectrometer and the
intensity (arbitrary units) is recorded

* What is the relationship of intensity to concentration
* Use later to infer concentration of labeled analyte

T S O T
5.0

Intensity 2.1 12.6 17.3 21.0 24.7
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Residuals:
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Residual standard error: 0.4328 on 5 degrees of freedom
Multiple R-Squared: 0.9978, Adjusted R-squared: 0.9973
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Use of the calibration curve

y=1.52+1.93x
y 1s the predicted average intensity

x 1S the true concentration

3y 152

1.93
y 1s the observed intensity

S —

x 1s the estimated concentration
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Measurement and Calibration

Essentially all things we measure are indirect

The thing we wish to measure produces an observed
transduced value that is related to the quantity of
interest but is not itself directly the quantity of
interest

Calibration takes known quantities, observes the
transduced values, and uses the inferred relationship
to quantitate unknowns
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Measurement Examples

Weight is observed via deflection of a spring

(calibrated)

Concentration of an analyte in mass spec is observed
through the electrical current integrated over a peak
(possibly calibrated)

Gene expression is observed via fluorescence of a spot
to which the analyte has bound (usually not
calibrated) or by counting RNA fragments that map to
a given gene (also not usually calibrated)

January 14, 2026 BIM 283 Experimental Design for BME

24



/ o R e —

=

Correlation

Wright peak-flow data set has two measures of peak
expiratory flow rate for each of 17 patients in 1/min.

ISWR library, data(wright)
Both are subject to measurement error

In ordinary regression, we assume the predictor is
known

For two measures of the same thing with no error-free
gold standard, one can use correlation to measure
agreement
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>ooortwright)

SR e B G 8 G B 1 B S R A SR
HEch e 1.0000000 0.9432794
B T A 01 e b 4 S 4 0 A1 1.0000000

SR e o R o
File wright.r:
dsEb A et ES W RY
data (wright)

wp o= function:()
{
1 o e S e B et S S o S e o o e SRR T e e
xlab="Standard Flow Meter",ylab="Mini Flow Meter", lwd=2))
title ("Mini vs. Standard Peak Flow Meters")
et el e e e R R S e e e S e e s O e e e B e
abline (coef (wright.1lm), col="red", lwd=2)
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Issues with Correlation

For any given relationship between two measurement
devices, the correlation will depend on the range over
which the devices are compared. If we restrict the
Wright data to the range 300-550, the correlation falls
from 0.94 to 0.77.

Correlation only measures linear agreement
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A strong nonlinear relationship with low correlation
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Measurement w

y,;,=a+bs, +e,

V2 =65

¢, 1s the true concentration

Method 2 1s the gold standard, measured without error

We can estimate all the unknowns, including o

Y, =a+bc +e,
Vo = 5}' e
¢; 18 the true unknown concentration

We have one more unknown (aj ) but no additional data

Cannot be solved without information/assumptions
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