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Parametric Survival Models

In many areas of statistics, parametric models are the
default and non-parametric models are sometimes an
alternative. With measured data, linear regression is the
default and non-parametric regression is a distant
competitor. For survival analysis in biology and medicine,
non-parametric methods have been dominant, though in
engineering, parametric methods are common.
Conditional on the assumptions, parametric methods can
be superior, though often there is less difference in the
conclusions than might naively be thought.
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We will first discuss the common statistical distributions
that are used in parametric time-to-event data analysis.
The most basic is the exponential distribution, and some
are generalizations of the exponential in the sense that
for some choices of parameters the distribution is the
exponential distribution. A different point of view than
usual is that of considering the distribution of Y = lnT
which often reorganizes a parametric family of
distributions into the form of a location-scale family in
the way that Gaussian distributions are a location-scale
family.
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We will then introduce some additional ways to look at
time-to-event regression models based on the treatment
in Kalbfleisch and Prentice (2002) and will show how the
software in the survival package can be used to fit and
examine parametric survival models. One technique is to
model the mean log survival time as a linear function of
parameters, which fits into the location-scale family
viewpoint of classes of distributions, and is thus clearly
related to linear regression.

David M. Rocke Parametric Survival Models November 21, 2024 4 / 30



Exponential Distribution

The exponential distribution is the base distribution
for survival analysis.

The distribution has a constant hazard λ

The mean survival time is λ−1
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f (t) = λe−λt

ln(f (t)) = lnλ− λt linear in t

F (t) = 1− e−λt

S(t) = e−λt

ln(S(t)) = −λt linear in t

h(t) = − d

dt
ln(S(t))

= − d

dt
(−λt)

= λ

h(t) = f (t)/S(t) = λe−λt/e−λt

= λ
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Since
ln(S(t)) = −λt

we can check whether the exponential distribution fits a
data set with survival function estimate Ŝ(t) by plotting

− ln[Ŝ(t)] and seeing if a straight line through the origin
with slope λ fits the shape well. We can formally
estimate λ using the exponential distribution MLE
previously derived.
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If T is exponentially distributed with parameter λ, then
Y = lnT has pdf

fY (y) = exp(y − α− ey−α), −∞ < y <∞,where

α = − lnλ

FY (y) = P(Y ≤ y)

= P(ln t ≤ y)

= P(t ≤ ey )

= 1− exp(−λey )
fY (y) = λey exp(−λey )

= e−αey exp(−e−αey )

= exp(y − α− ey−α)
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If we let Y = α +W , then the pdf of W is

fW (w) = exp(w − ew)

which is one of the extreme value distributions, so called
because it is the limiting distribution of a standardized
form of the minimum of a sample from a continuous
distribution with support on (−∞, a) for some a ≤ ∞.
Extreme value theory shows that there is only a small
number of possible forms that this limiting distribution
can take. This one is called the Gumbel distribution.
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R and the Exponential Distribution

Density, distribution function, quantile function and random generation for the

exponential distribution with rate = rate (i.e., mean = 1/rate).

dexp(x, rate = 1, log = FALSE)

pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)

qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)

rexp(n, rate = 1)

“The exponential distribution with rate λ has density f (x) = λe−λx

for x ≥ 0.”

This is the same parametrization as just shown. Note that we can
compute the hazard rate for any distribution as

dexp(x,rate)/pexp(x,rate,lower.tail=F)

which is f (x)/S(x).
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Weibull Distribution

One generalization of the exponential distribution is to
allow the hazard function to depend on time, with the
Weibull distribution having the functional form

λ(t) = λγ(λt)γ−1, λ, γ > 0

If γ = 1 then this is the exponential distribution with
constant hazard λ. If γ > 1, then this is monotone
increasing and if γ < 1, then it is monotone decreasing.
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h(t) = λγ(λt)γ−1

f (t) = λγ(λt)γ−1e−(λt)γ

S(t) = e−(λt)γ

A check for the fit of the Weibull distribution is provided
by the complementary log log (cloglog) plot of the
survival function estimate vs. log t, since

ln[− ln S(t)] = ln[(λt)γ]

= γ(ln t + lnλ)

which should approximate a straight line with slope γ
and intercept γ lnλ.
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It can be shown that the pdf of Y = ln t is

fY (y) = σ−1e(y−µ)/σ exp(−e(y−µ)/σ), ∞ < y <∞, and where

σ = γ−1

µ = α = − lnλ

or, more simply
y = α + σW

where W has the extreme value distribution shown for
the exponential, where Y = α +W . Thus, the shape of
the density for Y = lnT is fixed and only the location
and scale can be changed by λ and γ.
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R and the Weibull Distribution

Density, distribution function, quantile function and random generation for the

Weibull distribution with parameters shape and scale.

dweibull(x, shape, scale = 1, log = FALSE)

pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)

qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)

rweibull(n, shape, scale = 1)

The Weibull distribution with shape parameter a and scale parameter b has density given by

f (x) = (a/b)(x/b)a−1exp(−(x/b)a), x ≥ 0.

The cumulative distribution function is

F (x) = 1− exp(−(x/b)a), x ≥ 0.

the mean and variance are

E(X ) = bΓ(1 + 1/a)

Var(X ) = b2 ∗ (Γ(1 + 2/a)− (Γ(1 + 1/a))2)
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R and the Weibull Distribution

The Weibull distribution with shape parameter a and scale parameter b has density given by

f (x) = (a/b)(x/b)a−1exp(−(x/b)a), x ≥ 0.

The cumulative distribution function is

F (x) = 1− exp(−(x/b)a), x ≥ 0.

the mean and variance are

E(X ) = bΓ(1 + 1/a)

Var(X ) = b2 ∗ (Γ(1 + 2/a)− (Γ(1 + 1/a))2)

The scale parameter b = λ−1, and the shape parameter a = γ.
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Lognormal Distribution

Here the model for Y = lnT is of the form
Y = α + σW , but where W is a standard normal
variate. This model is not as widely used as some since
the log logistic is easier to handle and has similar
properties. Also, the shape of the hazard function is
often not realistic for medical and biological data.
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R and the Lognormal Distribution

dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)

plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)

qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)

rlnorm(n, meanlog = 0, sdlog = 1)

The log normal distribution has density

f (x) = 1/(
√
2πσx)e−(ln x−µ)2/(2σ2)

where µ and σ are the mean and standard deviation of the logarithm
of x . The mean is E (X ) = exp(µ+ 1/2σ2), the median is
med(X ) = exp(µ), and the variance is
Var(X ) = exp(2µ+ σ2)(exp(σ2)− 1) and hence the coefficient of

variation is
√

exp(σ2)− 1 which is approximately σ when that is
small (e.g., σ < 1/2).
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Gamma Distribution

Like the Weibull, the gamma is a two-parameter
generalization of the exponential. The density is

f (t) =
λ(λt)k−1eλt

Γ(k)

where Γ(n) = (n − 1)! for n a positive integer.
When k = 1 this is the exponential distribution. The
gamma distribution is also the waiting time until the k’th
event in a homogeneous Poisson process.
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The model for Y = lnT can be written as

Y = α +W

where α = − lnλ and W has the density

fW (w) =
exp(kw − ew )

Γ(k)

the mean and variance of which are the digamma function

ψ(k) =
d ln Γ(k)

dk

and the trigamma function

ψ(1)(k) =
d2 ln Γ(k)

dk2
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Stirling’s formula is a series approximation for the
natural log of the factorial function of which one form is

ln Γ(k + 1) = ln k! = k ln k + O(ln k)

ψ(k + 1) ≈ ln k

ψ(1)(k + 1) ≈ 1/k

It can be shown that for the log failure time
Y = lnT = α +W , when W is standardized by√
k(W − ln k), it converges to a standard normal variate

as k → ∞.
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R and the Gamma Distribution

Density, distribution function, quantile function and random generation for the

Gamma distribution with parameters shape and scale.

dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)

pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)

qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)

rgamma(n, shape, rate = 1, scale = 1/rate)

The Gamma distribution with parameters shape = a and scale = s has density

f (x) = 1/(saΓ(a))xa−1e−x/s

so shape= a = k and scale= s = λ−1. For the same parametrization, use rate= λ.
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Generalized Gamma Distribution

For a gamma variate, the log failure time can be written
as Y = lnT = α +W . For the generalized gamma, we
have Y = lnT = α + σW . In addition to the rate
parameter λ, the generalized gamma has parameters k
and σ. This family includes several previously given
distributions.

k σ Distribution
1 1 Exponential(λ)
1 σ = γ−1 Weibull(λ, γ)
k 1 Gamma(λ, k)
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One place to find functions relating to the generalized
gamma distribution is in the R package flexsurv. The
package contains two sets of functions for this
distribution, one in the original parametrization, and one
in terms of location and scale. the package also contains
distributional functions for the generalized F distribution
(in two parametrizations), the Gompertz distribution and
can fit spline functions to the log cumulative hazards.
User defined distributions can also be accommodated.

David M. Rocke Parametric Survival Models November 21, 2024 26 / 30



R and the Generalized Gamma
Distribution

GenGamma.orig Generalized gamma distribution (original parameterisation)

Density, distribution function, hazards, quantile function and random generation

for the generalized gamma distribution, using the original parameterisation

from Stacy (1962).

dgengamma.orig(x, shape, scale = 1, k, log = FALSE)

pgengamma.orig(q, shape, scale = 1, k, lower.tail = TRUE, log.p = FALSE)

Hgengamma.orig(x, shape, scale = 1, k)

hgengamma.orig(x, shape, scale = 1, k)

qgengamma.orig(p, shape, scale = 1, k, lower.tail = TRUE, log.p = FALSE)

rgengamma.orig(n, shape, scale = 1, k)

For GenGamma.orig, scale is λ−1 and shape is Weibull γ.
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R and the Generalized Gamma
Distribution

GenGamma Generalized gamma distribution

Density, distribution function, hazards, quantile function and random generation

for the generalized gamma distribution, using the parameterisation originating

from Prentice (1974). Also known as the (generalized) log-gamma distribution.

dgengamma(x, mu = 0, sigma = 1, Q, log = FALSE)

pgengamma(q, mu = 0, sigma = 1, Q, lower.tail = TRUE, log.p = FALSE)

Hgengamma(x, mu = 0, sigma = 1, Q)

hgengamma(x, mu = 0, sigma = 1, Q)

qgengamma(p, mu = 0, sigma = 1, Q, lower.tail = TRUE, log.p = FALSE)

rgengamma(n, mu = 0, sigma = 1, Q)

dgengamma.orig(x,shape=shape,scale=scale,k=k) =

dgengamma(x,mu=log(scale) + log(k)/shape,sigma=1/(shape*sqrt(k)),Q=1/sqrt(k))

In addition to the Weibull and gamma distributions, this also can fit a log-normal distribution
with Q = 0
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Log-Logistic Distribution

Like the log-normal, this is defined by selecting a
different error distribution for W in Y = α + σW . For
the log logistic, the density of W is

fW (w) =
ew

(1 + ew)2

This is a symmetric density with mean 0 and variance
π2/3 with slightly heavier tails than the normal. For t we
have

f (t) =
λγ(λt)γ−1

[1 + (λt)γ]2
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An advantage of the log-logistic over the log-normal is that there are
closed form expressions for the survival function and the hazard
function:

f (t) =
λγ(λt)γ−1

[1 + (λt)γ]2

S(t) =
1

1 + (λt)γ

λ(t) =
λγ(λt)γ−1

1 + (λt)γ

The numerator of the hazard function is the Weibull hazard. If
γ < 1, it is monotone decreasing; if γ = 1 it is monotone increasing
from λ; if γ > 1 it increases from zero to a maximum and then
decreases toward 0.
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