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Basic Quantities and Models

The probability density function f (x) is defined as with
any continuous distribution. For any short interval of
time, it can be thought of as the relative chance that the
event will occur in that short interval. The cumulative
distribution function is

F (x) = Pr(X ≤ x) =

∫ x

0

f (x)dx

For survival data, a more relevant quantity is the survival
function

S(x) = 1− F (x) = Pr(X > x) =

∫ ∞

x

f (x)dx
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Basic Quantities and Models

S(x) = 1− F (x) = Pr(X > x) =

∫ ∞

x

f (x)dx

The survival function S(x) is the probability that the
event time is later than x . If the event in a clinical trial
is death, then this is the fraction of the original
population at time 0 that is still alive at time x ; that is,
the fraction surviving to time x .
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The Hazard Function

Another important function is the hazard function, which
is the probability that the event will occur in the next
very short interval, given that it has not occurred yet.

h(x) = lim
∆x→0

Pr[x ≤ X < x +∆x |X ≥ x ]

∆x

The expression in the numerator is the probability of
survival until at least time x +∆x conditional on
surviving until time x . This might be the chance of
someone who has just turned 30 still being alive one day
later.
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The Hazard Function

h(x) = lim
∆x→0

Pr[x ≤ X < x +∆x |X ≥ x ]

∆x

This might be the chance of someone who has just
turned 30 still being alive one day later. You can see that
this is different than the probability at birth of surviving
until age 30 plus one day. The first is the ratio of the
number of those who die at age 30 plus one day over the
number alive at age 30. The second is a ratio with the
same numerator, but with the larger denominator of the
number who are born. The latter ratio is smaller.
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The Hazard Function

h(x) = lim
∆x→0

Pr[x ≤ X < x +∆x |X ≥ x ]

∆x

= S−1(x) lim
∆x→0

Pr[x ≤ X < x +∆x ]

∆x
= f (x)/S(x)

The limit takes the difference quotient into a derivative
(by definition of the derivative) and the result is because
the density f (x) is the derivative of the CDF F (x).
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The Hazard Function

Also,

h(x) = lim
∆x→0

Pr[x ≤ X < x +∆x |X ≥ x ]

∆x
= f (x)/S(x)

f (x) = −dS(x)

dx
Because F ′ = f

h(x) = −d ln(S(x))

dx
= −S−1(x)

dS(x)

dx
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Cumulative Hazard

h(x) = −d ln(S(x))

dx
The cumulative hazard function is

H(x) =

∫ x

0

h(t)dt = − ln(S(x))

This function is easier to estimate than the hazard
function, and we can then approximate the hazard
function by the approximate derivative of the cumulative
hazard.
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Exponential Distribution

The exponential distribution is the base distribution
for survival analysis.

The distribution has a constant hazard λ which
makes it the simplest survival distribution in that
sense.

The mean survival time is λ−1

David M. Rocke Basic Quantities and Models September 30, 2025 12 / 29



f (x ;λ) = λe−λx density = likelihood

ln(f (x ;λ)) = lnλ− λx log likelihood
∂

∂λ
ln(f (x ;λ)) = λ−1 − x

F (x) = 1− e−λx

S(X ) = e−λx

ln(S(x)) = −λx

h(x) = − d

dx
ln(S(x))

= − d

dx
(−λx)

= λ
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Estimation of λ

Suppose we have m exponential survival times of
t1, t2, . . . , tm and k right-censored values at
u1, u2, . . . , uk .

A survival time of ti = 10 means that subject i died
at time 10. A right-censored time ui = 10 means
that at time 10, subject i was still alive and that we
have no further follow-up.

For the moment we will assume that the survival
distribution is exponential and that all the subjects
have the same parameter λ.

David M. Rocke Basic Quantities and Models September 30, 2025 14 / 29



Estimation of λ

λ is the reciprocal of the mean survival time.

A naive estimate of λ−1 is the average of the
survival times of the of those subjects who died,
m−1

∑
ti , but this is not correct because it ignores

the k subjects that are still alive.

Suppose one subject died at 1 day, and the rest were
still alive at 10 years. One day is a poor estimate of
average survival (although this is often the first
thing that statistically naive investigators think of).

This estimate of average survival could be too small
or too large.
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Estimation of λ

Another naive estimate of λ−1 is the average of the
times of all the subjects, (m + k)−1[

∑
ti +

∑
ui ],

but this is not correct either because it treats the
subjects who are still alive as though they had just
died.

This estimate of average survival is too small if any
of the subjects are censored.
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Estimation of λ

Suppose we have m exponential survival times of
t1, t2, . . . , tm and k right-censored values at
u1, u2, . . . , uk .

A survival time of ti = 10 means that subject i died
at time 10. A right-censored time ui = 10 means
that at time 10, subject i was still alive and that we
have no further follow-up.

For the moment we will assume that the survival
distribution is exponential and that all the subjects
have the same parameter λ.
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Estimation of λ

We have m exponential survival times of t1, t2, . . . , tm
and k right-censored values at u1, u2, . . . , uk . The
log-likelihood of an observed survival time ti is

ln
(
λe−λti

)
= lnλ− λti

and the likelihood of a censored value is the probability
of that outcome (survival greater than uj) so the
log-likelihood is

log(e−λuj) = −λuj .
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Let T =
∑

ti and U =
∑

uj . Then the log likelihood is

m∑
i=1

(lnλ− λti) +
k∑

j=1

(−λuj) = m lnλ− λ(T + U)
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m lnλ− λ(T + U)

is maximized when the derivative wrt λ is 0, that is when

0 = m/λ̂− (T + U)

λ̂ = m/(T + U)

1/λ̂ = (T + U)/m

Thus, the estimated mean survival is the total of the
times, exact and censored, divided by the number of
exact times. It can be show that the variance of λ̂ is
asymptotically λ2/m, depending only on the number of
uncensored observations. This is generally true.
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Suppose that we have two groups with m items in each
group, where the mean time in each group is x̄ . If the
times in group 1 are failures and the times in group 2 are
censored, vs. both are failures, then

1/λ̂ = (mx̄ +mx̄)/m

= x̄ + x̄ = 2x̄

V̂ (λ̂) = λ̂2/m

1/λ̂ = (mx̄ +mx̄)/(2m)

= (x̄ + x̄)/2 = x̄

V̂ (λ̂) = λ̂2/(2m)
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The Score and the Fisher Information

The log likelihood is

ℓℓ = m lnλ− (T + U)λ

and its derivative, called the score, is

ℓℓ′ = m/λ− (T + U)

Under certain conditions, the negative derivative of the
score, called the Fisher Information, estimates the
reciprocal of the variance of the MLE.
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The score is
ℓℓ′ = m/λ− (T + U)

(which is 0 evaluated at the MLE) and the observed
Fisher information is

−ℓℓ′′ = m/λ̂2

and its reciprocal is
λ̂2/m

Although the value of λ̂ depends on both the uncensored
data and the censored data, the variance depends only
on the uncensored sample size.
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The (expected value of the) score statistic is zero
when evaluated at the MLE.

The larger the second derivative of the log
likelihood is, the steeper the fall-off from the MLE
and the more certainly we know the true parameter.

The multivariate generalization of the Fisher
information is most times the method of
determining the variance covariance matrix for Wald
tests.

Or we can use the likelihood ratio chi-squared test
and interval from inverting this test (profile
likelihood).
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Multivariate Generalization

If there are p parameters, then the score is the
gradient vector of length p of partial derivatives of
the log likelihood. This determines the estimates by
solving p equations in p unknowns setting the score
vector to the zero vector.

The Hessian H is the matrix of second partials and
its negative inverse evaluated at the MLE’s
estimates the variance covariance matrix of the
estimated parameters.
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If we have a null hypothesis for the exponential
parameter λ

H0 : λ = λ0

then the log likelihood at the MLE is

ℓℓ = m ln(m/(T + U))−m

and at the null hypothesis is

ℓℓ = m lnλ0 − (T + U)λ0

The likelihood ratio statistic is the negative of twice
the difference between the log likelihood at the null
and the log likelihood at the MLE.
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We can construct a confidence interval for λ in two
ways: using the asymptotic normal approximation or
the likelihood ratio statistics.
The plot on the next slide is for
m = 10, k = 5,T = 100,U = 10 with

λ̂ = 0.0909

ŝe(λ) = 0.02875

The red lines are at ±1.96 standard errors away
from the MLE.
The blue line is at the chisquare statistic with 5% in
the tail and 1 df and intersects the likelihood curve
to form another interval.

David M. Rocke Basic Quantities and Models September 30, 2025 27 / 29



0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

−
15

−
10

−
5

0

lambda

LL
R

Wald Interval and Profile Likelihood Interval

David M. Rocke Basic Quantities and Models September 30, 2025 28 / 29



The Wald test/interval and the LLR test/profile
likelihood interval are both asymptotically accurate
subject to assumptions.

Frequently, the convergence of the LLR procedures
to asymptopia is faster than that of the Wald
procedures.

We could check this by simulation under the
assumptions.

Also, the profile likelihood procedures are
unchanged by transformations in the
parameter—the same for λ as for the mean λ−1;
this is not true of the Wald procedures.
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