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Background on the Proportional Hazards
Model

The exponential distribution has constant hazard

f (t) = λe−λt

S(t) = e−λt

h(t) = λ

Let’s make two generalizations. First, let’s let the hazard
depend on covariates x1, x2, . . . xp. Second, let’s let the
base hazard depend on t. We can do this using either
parametric or semi-parametric approaches.
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The Cox Model

The generalization is that the hazard function is

η = β1x1 + · · ·+ βpxp
h(t|covariates) = h0(t)e

η

This has a log link as in a generalized linear model. It is
semi-parametric because the linear predictor depends on
estimated parameters but the base hazard function is
unspecified. There is no constant term because it is
absorbed in the base hazard. Note that for two different
individuals with possibly different covariates, the ratio of
the hazard functions is exp(η1)/ exp(η2) = exp(η1 − η2)
which does not depend on t.
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The Cox Model

How do we fit this model? We need to estimate the
coefficients of the covariates, and we need to estimate
the base hazard h0(t). For the covariates, supposing for
simplicity that there are no tied event times, let the
event times for the whole data set be t1, t2, . . . , tD . Let
the risk set at time ti be R(ti) and

ηj = β1xj1 + · · ·+ βpxjp
θj = eηj

h(t|covariates) = h0(t)e
η = θh0(t)
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The Cox Model

Conditional on a single failure at time ti , the probability
that the event is due to subject j ∈ R(ti) is

Pr(j fails|1 failure at ti) =
h0(ti)e

ηj∑
k∈R(ti ) h0(ti)e

ηk

=
θj∑

k∈R(ti ) θk
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The Cox Model

The logic behind this has several steps. We first fix
(ex post) the failure times and note that in this
discrete context, the probability pj that a subject j
in the risk set fails at time t is just the hazard of
that subject at that time.

If all of the pj are small, the chance that exactly one
subject fails is

∑
k∈R(t)

pk

 ∏
m∈R(t),m ̸=k

(1− pm)

 ≈
∑

k∈R(t)

pk
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The Cox Model

If subject j(i) is the one who fails at time ti , then the
partial likelihood is

L(β|T ) =
∏
i

θj(i)∑
k∈R(ti ) θk

and we can numerically maximize this with respect to
the coefficients. When there are tied event times
adjustments need to be made, but the likelihood is still
similar. Note that we don’t need to know the base
hazard to solve for the coefficients.

David M. Rocke Survival Regression Models October 9, 2025 7 / 33



The Cox Model

Once we have coefficient estimates β̂1, . . . , β̂p, this also

defines η̂j and θ̂j and then the estimated base cumulative
hazard function is

Ĥ(t) =
∑
ti<t

di∑
k∈R(ti ) θk

which reduces to the Nelson-Aalen estimate when there
are no covariates. There are numerous other estimates
that have been proposed as well.
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Adjustment for Ties

At each time ti at which more than one of the subjects
has an event, let di be the number of events at that
time, Di the set of subjects with events at that time, and
let si be a covariate vector for an artificial subject
obtained by adding up the covariate values for the
subjects with an event at time ti . Let

η̄i = β1si1 + · · ·+ βpsip

and θ̄i = exp(η̄i).
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Adjustment for Ties

Let si be a covariate vector for an artificial subject
obtained by adding up the covariate values for the
subjects with an event at time ti . Note that

η̄i =
∑
j∈Di

β1xj1 + · · ·+ βpxjp

= β1si1 + · · ·+ βpsip
θ̄i = exp(η̄i)

=
∏
j∈Di

θi
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Adjustment for Ties

Breslow’s method estimates the partial likelihood as

L(β|T ) =
∏
i

θ̄i
[
∑

k∈R(ti ) θk ]
di

=
∏
i

∏
j∈Di

θj∑
k∈R(ti ) θk

This method is equivalent to treating each event as
distinct and using the non-ties formula. It works best
when the number of ties is small. It is the default in
many statistical packages, including PROC PHREG in
SAS.
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Adjustment for Ties

The other common method is Efron’s, which is the
default in R.

L(β|T ) =
∏
i

θ̄i∏di
j=1[

∑
k∈R(ti ) θk −

j−1
di

∑
k∈Di

θk ]

This is closer to the exact discrete partial likelihood when
there are many ties. The third option in R (and an option
also in SAS as “discrete”) is the “exact” method, which
is the same one used for matched logistic regression.
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Suppose as an example we have a time t where there are
20 individuals at risk and three failures. Let the three
individuals have risk parameters θ1, θ2, θ3 and let the sum
of the risk parameters of the remaining 17 individuals be
θR . Then the factor in the partial likelihood at time t
using Breslow’s method is(

θ1
θR + θ1 + θ2 + θ3

)(
θ2

θR + θ1 + θ2 + θ3

)(
θ3

θR + θ1 + θ2 + θ3

)
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If on the other hand, they had died in the order 1,2, 3,
then the contribution to the partial likelihood would be(

θ1
θR + θ1 + θ2 + θ3

)(
θ2

θR + θ2 + θ3

)(
θ3

θR + θ3

)
as the risk set got smaller with each failure. The exact
method roughly averages the results for the six possible
orderings of the failures.
But we don’t know the order they failed in, so instead of
reducing the denominator by one risk coefficient each
time, we reduce it by the same fraction. This is Efron’s
method.

David M. Rocke Survival Regression Models October 9, 2025 14 / 33



Efron’s method:

(
θ1

θR + θ1 + θ2 + θ3

)(
θ2

θR + 2(θ1 + θ2 + θ3)/3

)(
θ3

θR + (θ1 + θ2 + θ3)/3

)
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The coxph() Function in R

coxph {survival} R Documentation

Fit Proportional Hazards Regression Model

Description

Fits a Cox proportional hazards regression model.

Time dependent variables, time dependent strata, multiple events per subject,

and other extensions are incorporated using the counting process formulation of

Andersen and Gill.

Usage

coxph(formula, data=, weights, subset,

na.action, init, control,

ties=c("efron","breslow","exact"),

singular.ok=TRUE, robust=FALSE,

model=FALSE, x=FALSE, y=TRUE, tt, method, ...)
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The coxph() Function in R
coxph(formula, data=, weights, subset,

na.action, init, control,

ties=c("efron","breslow","exact"),

singular.ok=TRUE, robust=FALSE,

model=FALSE, x=FALSE, y=TRUE, tt, method, ...)

Arguments

formula a formula object, with the response on the left of a ~ operator,

and the terms on the right. The response must be a survival object

as returned by the Surv function.

data a data.frame in which to interpret the variables named in the formula,

or in the subset and the weights argument.

weights vector of case weights. If weights is a vector of integers,

then the estimated coefficients are equivalent to estimating the model

from data with the individual cases replicated as many times as

indicated by weights.

subset expression indicating which subset of the rows of data

should be used in the fit. All observations are included by default.
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The coxph() Function in R

coxph(formula, data=, weights, subset,

na.action, init, control,

ties=c("efron","breslow","exact"),

singular.ok=TRUE, robust=FALSE,

model=FALSE, x=FALSE, y=TRUE, tt, method, ...)

Arguments

ties a character string specifying the method for tie handling.

If there are no tied death times all the methods are equivalent.

Nearly all Cox regression programs use the Breslow method by default,

but not this one. The Efron approximation is used as the default here,

it is more accurate when dealing with tied death times, and is as

efficient computationally. The "exact partial likelihood" is

equivalent to a conditional logistic model, and is appropriate

when the times are a small set of discrete values. See further below.
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The proportional hazards model is usually expressed in terms of a

single survival time value for each person, with possible censoring.

Andersen and Gill reformulated the same problem as a counting

process; as time marches onward we observe the events for a

subject, rather like watching a Geiger counter. The data for a

subject is presented as multiple rows or “observations,” each of

which applies to an interval of observation (start, stop].
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There are special terms that may be used in the model equation. A

strata term identifies a stratified Cox model; separate baseline

hazard functions are fit for each stratum. The cluster term is used

to compute a robust variance for the model. The term + cluster(id)

where each value of id is unique is equivalent to specifying the

robust=T argument. If the id variable is not unique, it is assumed

that it identifies clusters of correlated observations. The robust

estimate arises from many different arguments and thus has had

many labels. It is variously known as the Huber sandwich estimator,

White’s estimate (linear models/econometrics), the

Horvitz-Thompson estimate (survey sampling), the working

independence variance (generalized estimating equations), the

infinitesimal jackknife, and the Wei, Lin, Weissfeld (WLW) estimate.

The method was originally invented by David Cox.
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Cox Model for bmt Survival vs. Group

> dfsurv <- Surv(bmt$t2,bmt$d3)

> bmt.cox <- coxph(dfsurv~factor(group),data=bmt)

> summary(bmt.cox)

n= 137, number of events= 83

coef exp(coef) se(coef) z Pr(>|z|)

factor(group)2 -0.5742 0.5632 0.2873 -1.999 0.0457 *

factor(group)3 0.3834 1.4673 0.2674 1.434 0.1516

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

factor(group)2 0.5632 1.7757 0.3207 0.989

factor(group)3 1.4673 0.6815 0.8688 2.478

Concordance= 0.625 (se = 0.031 )

Rsquare= 0.094 (max possible= 0.996 )

Likelihood ratio test= 13.45 on 2 df, p=0.001199

Wald test = 13.03 on 2 df, p=0.00148

Score (logrank) test = 13.81 on 2 df, p=0.001004
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Cox Model for bmt Survival vs. Group

Hypothesis tests for factor levels compare group 2 to group 1 and 3 to group 1.

Group 3 has the highest hazard and group 2 has the lowest so the most significant

comparison is not directly shown.

The coefficient 0.3834 is on the log-hazard-ratio scale, as in log-risk-ratio.

The next column gives the hazard ratio 1.4673, and a hypothesis (Wald) test.

The (not shown) group 3 vs. group 2 log hazard ratio is 0.3834 + 0.5742 = 0.9576.

The hazard ratio is then exp(0.9576) or 2.605. Inference on all coefficients

and combinations can be constructed using coef(bmt.cox) and vcov(bmt.cox).

coef exp(coef) se(coef) z Pr(>|z|)

factor(group)2 -0.5742 0.5632 0.2873 -1.999 0.0457 *

factor(group)3 0.3834 1.4673 0.2674 1.434 0.1516

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Cox Model for bmt Survival vs. Group

The next part of the output gives 95% confidence intervals for the

relative risk. For the difference between groups 2 and 3 we need to use

coef(bmt.cox) and vcov(bmt.cox).

exp(coef) exp(-coef) lower .95 upper .95

factor(group)2 0.5632 1.7757 0.3207 0.989

factor(group)3 1.4673 0.6815 0.8688 2.478

> coef(bmt.cox)

factor(group)2 factor(group)3

-0.5741967 0.3834137

> vcov(bmt.cox)

factor(group)2 factor(group)3

factor(group)2 0.08254038 0.04181177

factor(group)3 0.04181177 0.07148991
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Cox Model for bmt Survival vs. Group

coef exp(coef) se(coef) z Pr(>|z|)

factor(group)2 -0.5742 0.5632 0.2873 -1.999 0.0457 *

factor(group)3 0.3834 1.4673 0.2674 1.434 0.1516

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> coef(bmt.cox)

factor(group)2 factor(group)3

-0.5741967 0.3834137

> vcov(bmt.cox)

factor(group)2 factor(group)3

factor(group)2 0.08254038 0.04181177

factor(group)3 0.04181177 0.07148991

> sqrt(vcov(bmt.cox)[1,1])

[1] 0.2872984

> sqrt(vcov(bmt.cox)[2,2])

[1] 0.267376
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Cox Model for bmt Survival vs. Group

coef exp(coef) se(coef) z Pr(>|z|)

factor(group)2 -0.5742 0.5632 0.2873 -1.999 0.0457 *

factor(group)3 0.3834 1.4673 0.2674 1.434 0.1516

exp(coef) exp(-coef) lower .95 upper .95

factor(group)2 0.5632 1.7757 0.3207 0.989

factor(group)3 1.4673 0.6815 0.8688 2.478

> c1 <- coef(bmt.cox)

> v1 <- vcov(bmt.cox)

> cont1 <- c(-1,1)

> t(cont1) %*% c1

[,1]

[1,] 0.9576104 log hazard ratio group 3 to group2

> t(cont1) %*% v1 %*% cont1

[,1]

[1,] 0.07040675

> sqrt(t(cont1) %*% v1 %*% cont1)

[,1]

[1,] 0.2653427 standard error of log hazard ratio
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Cox Model for bmt Survival vs. Group

coef exp(coef) se(coef) z Pr(>|z|)

factor(group)2 -0.5742 0.5632 0.2873 -1.999 0.0457 *

factor(group)3 0.3834 1.4673 0.2674 1.434 0.1516

> t(cont1) %*% c1

[1,] 0.9576104 log hazard ratio group 3 to group2

> sqrt(t(cont1) %*% v1 %*% cont1)

[1,] 0.2653427 standard error of log hazard ratio

> lhr23 <- t(cont1) %*% c1

> sqrt(t(cont1) %*% v1 %*% cont1)

[1,] 0.2653427

> selhr23 <- sqrt(t(cont1) %*% v1 %*% cont1)

> lhr23/selhr23

[1,] 3.608957

> lhr23+1.96*selhr23

[1,] 1.477682

> lhr23-1.96*selhr23

[1,] 0.4375387

David M. Rocke Survival Regression Models October 9, 2025 26 / 33



Cox Model for bmt Survival vs. Group

Concordance is agreement of first failure between pairs of subjects and

higher predicted risk between those subjects, omitting non-informative pairs.

The Rsquare value is Cox and Snell’s pseudo R-squared and is not very useful.

There are three tests for whether the model with the group covariate

is better than the one without

--Usual likelihood ratio chi-squared

--Wald test chi-squared, obtained with the covariance matrix

--score = log-rank test, as with comparison of survival functions.

The likelihood ratio test is probably best in smaller samples, followed

by the Wald test.

Concordance= 0.625 (se = 0.031 )

Rsquare= 0.094 (max possible= 0.996 )

Likelihood ratio test= 13.45 on 2 df, p=0.001199

Wald test = 13.03 on 2 df, p=0.00148

Score (logrank) test = 13.81 on 2 df, p=0.001004
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Cox Model for bmt Survival vs. Group

> c1 <- coef(bmt.cox)

> v1 <- vcov(bmt.cox)

> t(c1)%*%solve(v1)%*%c1

[,1]

[1,] 13.03152

Concordance= 0.625 (se = 0.031 )

Rsquare= 0.094 (max possible= 0.996 )

Likelihood ratio test= 13.45 on 2 df, p=0.001199

Wald test = 13.03 on 2 df, p=0.00148

Score (logrank) test = 13.81 on 2 df, p=0.001004

A general Wald test for H0 : β = β0 is obtained with

(β̂ − β0)
⊤V−1(β̂ − β0)
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Cox Model for bmt Survival vs. Group

The anova function performs the likelihood ratio test for comparing models.

One can use drop1(), add1(), step(), or compare two explicit models.

> anova(bmt.cox)

Analysis of Deviance Table

Cox model: response is dfsurv

Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chi|)

NULL -373.30

factor(group) -366.57 13.452 2 0.001199 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Concordance= 0.625 (se = 0.031 )

Rsquare= 0.094 (max possible= 0.996 )

Likelihood ratio test= 13.45 on 2 df, p=0.001199

Wald test = 13.03 on 2 df, p=0.00148

Score (logrank) test = 13.81 on 2 df, p=0.001004
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Inference on Combinations of Coefficients

If a predictor is categorical, with possible values
a1, a2, . . . ap then the output of essentially any regression
method is in terms of p − 1 coefficients
B = (b2, b3, . . . , bp), which are differences on the
appropriate scale of groups 2, 3, . . . , p from group 1. and
an estimated covariance matrix V . Any linear
combination of coefficients, such as b3 − b2 can be
represented via a vector of weights w of length p − 1
such as (−1, 1, 0, . . . , 0) in the form w⊤B whose
variance is then w⊤Vw .
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Survival Curves from the Cox Model

We defined the “base hazard” but then did not use it to
estimate the coefficients. In fact, there is no meaningful
base hazard. In this case, it is the hazard for group 1.
We can use survfit to get survival functions, but by
default it produces the hazard for an average individual
with average covariates. This is like the family with 1.5
children—it does not exist. Always it is best to specify
the covariate level(s) for which you want the survival
curve(s). In this case, we can plot the Cox model
survival curves, which are by definition proportional,
along with the individual KM curves for the groups.
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plot(survfit(dfsurv~group,data=bmt))

lines(survfit(bmt.cox,data.frame(group=1:3),conf.int=F),col="red")

legend("bottomleft",c("Kaplan-Meier","Cox Model"),col=c("black","red"),lwd=1)

title("Survival Functions for Three Groups by KM and Cox Model")

When we use survfit() with a Cox model, we should include a data frame

with the same named columns as the predictors in the Cox model and

one or more levels of each.

For example

> data.frame(group=1:3,age=50)

group age

1 1 50

2 2 50

3 3 50

> data.frame(group=rep(1:3,2),age=rep(c(50,60),each=3))

group age

1 1 50

2 2 50

3 3 50

4 1 60

5 2 60

6 3 60
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