
Building and Checking Survival Models

David M. Rocke

October 16, 21, 2025

David M. Rocke Building and Checking Survival Models October 16, 21, 2025 1 / 66



hodg Lymphoma Data Set from KMsurv

This data set consists of information on 43 bone marrow
transplant patients at Ohio State University (Avalos
1993). The patients had either Hodgkin’s or
non-Hodgkin lymphoma and were treated either with an
allogenic (HLA-matched sib) or autologous bone marrow
transplant. In addition to the time to death or relapse
(or censored), the data set has the Karnofsky score and
the waiting time to transplant in months.

Bone marrow and stem cell tranplants require essentially
killing the patient’s white blood and stem cells by
radiation or chemotherapy, so this is a fairly dangerous
procedure.
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R-CHOP Therapy (since 2006)

This combination contains the chemotherapy drugs
cyclophosphamide, doxorubicin hydrochloride (hydroxydaunomycin),
and vincristine sulfate (Oncovin), the targeted therapy drug
rituximab, and the steroid hormone prednisone. Combinations
usually work better than single drugs because different drugs kill
cancer cells in different ways.

Drugs in the R-CHOP combination:
R Rituximab
C Cyclophosphamide
H Doxorubicin Hydrochloride (Hydroxydaunomycin)
O Vincristine Sulfate (Oncovin)
P Prednisone
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R-CHOP: Use in Cancer
R-CHOP is used to treat B-cell non-Hodgkin lymphoma, including
the following types:

Diffuse large B-cell lymphoma (DLBCL).

Follicular lymphoma that is advanced. It is used as the first
treatment.

Waldenström macroglobulinemia.

This combination may also be used with other drugs or
treatments or to treat other types of cancer.

R-CHOP was the first initial therapy for non-Hodgkin lymphoma
that can be actually curative and not just induce temporary
remission. In this case, fewer patients will need bone marrow or
stem cell tranplants.
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hodg Lymphoma Data Set from KMsurv

gtype Graft type
1=allogenic,
2=autologous

dtype Disease type
1=Non Hodgkin lymphoma,
2=Hodgkins disease

time Time to death or relapse, days
delta Death/relapse indicator

0=alive,
1=dead

score Karnofsky score
wtime Waiting time to transplant in months
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Karnofsky Score

Score 80–100: Able to carry on normal activity and to
work; no special care needed.
Score 50–70: Unable to work; able to live at home and
care for most personal needs; varying amount of
assistance needed.
Score 10-60: Unable to care for self; requires equivalent
of institutional or hospital care; disease may be
progressing rapidly.
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> hodg2 <- hodg

> hodg2$gtype <- with(hodg,factor(gtype,labels=c("Allo","Auto")))

> table (hodg2$gtype,hodg$gtype)

1 2

Allo 16 0

Auto 0 27

> hodg2$dtype <- with(hodg,factor(dtype,labels=c("NHL","HOD")))

> table (hodg2$dtype,hodg$dtype)

1 2

NHL 23 0

HOD 0 20

> with(hodg2,(table(gtype,dtype)))

dtype

gtype NHL HOD

Allo 11 5

Auto 12 15
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> hodg.surv <- with(hodg2,Surv(time,delta))

> hodg.cox1 <- coxph(hodg.surv~gtype*dtype+score+wtime,data=hodg2)

> summary(hodg.cox1)

n= 43, number of events= 26

coef exp(coef) se(coef) z Pr(>|z|)

gtypeAuto 0.63940 1.89534 0.59372 1.077 0.28151

dtypeHOD 2.76033 15.80504 0.94738 2.914 0.00357 **

score -0.04948 0.95172 0.01242 -3.984 6.77e-05 ***

wtime -0.01656 0.98357 0.01021 -1.623 0.10461

gtypeAuto:dtypeHOD -2.37093 0.09339 1.03548 -2.290 0.02204 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

gtypeAuto 1.89534 0.52761 0.59199 6.0682

dtypeHOD 15.80504 0.06327 2.46821 101.2066

score 0.95172 1.05073 0.92884 0.9752

wtime 0.98357 1.01670 0.96409 1.0034

gtypeAuto:dtypeHOD 0.09339 10.70738 0.01227 0.7108
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> hodg.surv <- with(hodg2,Surv(time,delta))

> hodg.cox1 <- coxph(hodg.surv~gtype*dtype+score+wtime,data=hodg2)

> summary(hodg.cox1)

Concordance= 0.776 (se = 0.061 )

Rsquare= 0.527 (max possible= 0.983 )

Likelihood ratio test= 32.15 on 5 df, p=5.539e-06

Wald test = 27.19 on 5 df, p=5.232e-05

Score (logrank) test = 37.7 on 5 df, p=4.325e-07
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Proportionality
If two hazard functions are proportional, then the cumulative hazard
functions are proportional. This means that the log cumulative
hazard functions are parallel.

h2(t) = ph1(t)

H2(t) = pH1(t)

ln[H2(t)] = ln[p] + ln[H1(t)]

also

ln[H(t)] = ln[− ln(S(t))]

The function on the RHS of this equation, ln[− ln()] is called the
complementary log-log, or cloglog. The negation is required because
S(t) ≤ 1.
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Proportionality

We first graph the survival function for the four
combinations of disease type and graft type.

We graph the complimentary log-log survival for the
four groups—these should be parallel with
proportional hazards.

Then we graph the observed vs. expected survival
functions.

There appear to be problems with proportionality.
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plot1 <- function(){

plot(survfit(hodg.surv~dtype+gtype,data=hodg2),xlim=c(0,600),col=1:4,lwd=2)

legend("topright",c("NHL Allo","NHL Auto","HOD Allo","HOD Auto"),col=1:4,lwd=2)

title("Survival Curves for HOD/NHL and Allo/Auto Grafts")

}

plot2 <- function(){

plot(survfit(hodg.surv~dtype+gtype,data=hodg2,type="fleming"),

col=1:4,lwd=2,fun="cloglog")

legend("topleft",c("NHL Allo","NHL Auto","HOD Allo","HOD Auto"),col=1:4,lwd=2)

title("Complimentary Log-Log Survival Curves")

}

plot3 <- function(){

# score and wtime set to mean values for disease and graft types

plot(survfit(hodg.surv~dtype+gtype,data=hodg2),xlim=c(0,600),col=1:4,lwd=2)

lines(survfit(hodg.cox1,data.frame(gtype=c("Allo","Auto","Allo","Auto"),

dtype=c("NHL","NHL","HOD","HOD"),score=c(75,76,56,85),

wtime=c(17,23,59,58)),data=hodg2),col=1:4,lwd=2,lty=2)

legend("topright",c("NHL Allo","NHL Auto","HOD Allo","HOD Auto"),col=1:4,lwd=2)

title("Observed and Expected Survival Curves")

}
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Predictions and Residuals

In linear regression, we have a linear predictor for
each data point i

ηi = β0 + β1x1i + · · ·+ βpxpi

ŷi = η̂i = β̂0 + β̂1x1i + · · ·+ β̂pxpi
yi ∼ N(ηi , σ

2)

This point prediction is an estimate of the
conditional mean of yi given the covariate values of
point i . This together with the prediction error says
that we are predicting the distribution of values of y .
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Predictions and Residuals

The usual residual is ri = yi − ŷi which is the
difference between the actual value of y and a
prediction of its mean.

The residuals are also the quantities the sum of
whose squares is being optimized by the least
squares/MLE estimation.
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Predictions and Residuals

In survival analysis by Cox regression, the equivalent
of yi is the event time, which is not known for the
censored observations.

Because the base hazard is not defined by a
continuous formula, there is no such thing as the
“expected” (predicted mean) survival time for a
subject, so there is no single predicted value.

We do have a predicted distribution of survival,
which is defined by the base hazard times θ̂i , but
since there is no point prediction, there is no point
residual.
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Predictions and Residuals

Even if we had a continuous distribution the nature
of time-to-event data results in very wide prediction
intervals.

Suppose a cancer patient is predicted to have a
mean lifetime of 5 years after diagnosis and suppose
the distribution is exponential.

If we want a 95% interval for survival, the lower end
is at the 0.025 percentage point of the exponential
which is 0.13 years (1.5 months), or 1/40 of the
mean lifetime.

The upper end is at the 0.975 point which is 18.4
years, or 3.7 times the mean lifetime.
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Predictions and Residuals

Saying that the survival time is somewhere between
6 weeks and 18 years does not seem very useful but
it may be the best we can do.

For survival analysis, something is like a residual if it
is small when the model is accurate or if the
accumulation of them is in some way minimized by
the estimation algorithm, but there is no exact
equivalence to linear regression residuals.

There are a number of quantities that can be
thought of as like residuals in some way; they can
be quite large!
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Types of Residuals

It is often hard to make a decision from graph
appearances, though the process can reveal much.

Some diagnostic tests are based on residuals as with
other regression methods.

We use Schoenfeld residuals (via cox.zph) to test
for proportionality.

We use Cox-Snell residuals to test for goodness of
fit.

We use martingale residuals to look for non-linearity.

We can also look at dfbeta for influence.
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residuals.coxph {survival} R Documentation

Calculate Residuals for a ‘coxph’ Fit

Description

Calculates martingale, deviance, score, or Schoenfeld residuals for a

Cox proportional hazards model.

Usage

residuals(object,

type=c("martingale", "deviance", "score", "schoenfeld",

"dfbeta", "dfbetas", "scaledsch","partial"),

collapse=FALSE, weighted=FALSE, ...)

Arguments

object an object inheriting from class coxph, representing a fitted Cox

regression model. Typically this is the output from the coxph function.
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residuals(object,

type=c("martingale", "deviance", "score", "schoenfeld",

"dfbeta", "dfbetas", "scaledsch","partial"),

collapse=FALSE, weighted=FALSE, ...)

Arguments

object an object inheriting from class coxph, representing a fitted Cox

regression model. Typically this is the output from the coxph function.

type character string indicating the type of residual desired.

Possible values are "martingale", "deviance", "score", "schoenfeld",

"dfbeta"’, "dfbetas", and "scaledsch".

Only enough of the string to determine a unique match is required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent

models more than one row data can pertain to a single individual.

If there were 4 individuals represented by 3, 1, 2 and 4 rows of data

respectively, then collapse=c(1,1,1, 2, 3,3, 4,4,4,4) could be used

to obtain per subject rather than per observation residuals.
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For martingale and deviance residuals, the returned
object is a vector with one element for each subject
(without collapse). This means that even censored
observations have a martingale residual and a deviance
residual. Each subject’s value for the martingale residual
and the deviance residual is a single value.
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All observations also have a score residual, though this is
a vector not a scalar. For score residuals the returned
object is a matrix with one row per subject and one
column per variable. The row order will match the input
data for the original fit. The score residuals are each
individual’s contribution to the score vector. Two
transformations of this are often more useful: dfbeta is
the approximate change in the coefficient vector if that
observation were dropped, and dfbetas is the
approximate change in the coefficients, scaled by the
standard error for the coefficients.
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For Schoenfeld residuals, the returned object is a matrix
with one row for each event and one column per variable.
The rows are ordered by time within strata, and an
attribute strata is attached that contains the number of
observations in each strata. The scaled Schoenfeld
residuals are used in the cox.zph() function. Only
subjects with an observed event time have a Schoenfeld
residual, which like the score residual is a vector.
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Schoenfeld Residuals

There is a Schoenfeld residual for each subject i with an
event (not censored) and for each predictor xk . At the
event time t for that subject, there is a risk set R , and
each subject j in the risk set has a risk coefficient θj and
also a value xjk of the predictor. The Schoenfeld residual
is the difference between xik and the risk-weighted
average of all the xjk over the risk set.

rSik = xik −
∑

j∈R xjkθj∑
j∈R θj
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Schoenfeld Residuals

This is a measure of how typical the individual subject is with
respect to the covariate at the time of the event. Since subjects
should fail more or less uniformly according to risk, the Schoenfeld
residuals should be approximately level over time, not increasing or
decreasing. We can test this by a score test for whether a linear
trend of the residuals has slope 0 with respect to time on some
scale, which could be the time itself, the log time, or the rank in the
set of failure times. Previously, instead of the score test, a test of
correlation of the Schoenfeld residuals with the time variable was
used. The default is to use the KM curve as a transform, which is
similar to the rank but deals. better with censoring. The old
correlation test and the new score test are asymptotically identical
but not in small samples.
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cox.zph {survival} R Documentation

Test the Proportional Hazards Assumption of a Cox Regression

cox.zph(fit, transform="km", terms=TRUE, singledf=FALSE, global=TRUE)

Arguments

fit the result of fitting a Cox regression model, using the coxph

or coxme functions.

transform a character string specifying how the survival times should be

transformed before the test is performed.

Possible values are "km", "rank", "identity" or a function of

one argument.

terms if TRUE, do a test for each term in the model rather than

for each separate covariate. For a factor variable with k levels,

for instance, this would lead to a k-1 degree of freedom test.

The plot for such variables will be a single curve evaluating the

linear predictor over time.

singledf use a single degree of freedom test for terms that have multiple

coefficients, i.e., the test that corresponds most closely to the plot.

If terms=FALSE this argument has no effect.

global should a global chi-square test be done, in addition to the

per-variable or per-term tests tests.
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Value

an object of class "cox.zph", with components:

table a matrix with one row for each variable, and optionally a last row for the

global test. Columns of the matrix contain a score test of for addition of

the time-dependent term, the degrees of freedom, and the two-sided p-value.

x the transformed time axis.

time the untransformed time values; there is one entry for each event time

in the data

strata for a stratified coxph model, the stratum of each of the events

y the matrix of scaled Schoenfeld residuals. There will be one column per

term or per variable (depending on the terms option above), and one row per

event. The row labels are a rounded form of the original times.

var a variance matrix for the covariates, used to create an approximate standard error band for plots

transform the transform of time that was used

call the calling sequence for the routine.
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> hodg.zph <- cox.zph(hodg.cox1)

> print(hodg.zph)

chisq df p

gtype 0.5400 1 0.462

dtype 1.8012 1 0.180

score 3.8805 1 0.049

wtime 0.0173 1 0.895

gtype:dtype 4.0474 1 0.044

GLOBAL 13.7573 5 0.017

pdf("hodgzph1.pdf")

plot(hodg.zph[1])

dev.off()

pdf("hodgzph2.pdf")

plot(hodg.zph[2])

dev.off()

pdf("hodgzph3.pdf")

plot(hodg.zph[3])

dev.off()

pdf("hodgzph4.pdf")

plot(hodg.zph[4])

dev.off()

pdf("hodgzph5.pdf")

plot(hodg.zph[5])

dev.off()
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From the score test, the Karnofsky score and the
gtype:dtype interaction have modest but statistically
significant non-proportionality, the global test is also
statistically significant.

The sample size here is relatively small (26 events in
43 subjects). If the sample size is large, very small
amounts of non-proportionality can induce a
significant result.

As time goes on, autologous grafts are
over-represented at their own event times, but those
from HOD patients become less represented.

Both the statistical tests and the plots are useful.
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Goodness of Fit using the Cox-Snell
Residuals

Suppose that the i th individual has a survival time Ti

which has survival function Si(t), meaning that
Pr(Ti > t) = Si(t). Then Si(Ti) has a uniform
distribution on (0, 1).

Pr(Si(Ti) ≤ u) = Pr(Ti > S−1
i (u))

= Si(S
−1
i (u))

= u
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Goodness of Fit using the Cox-Snell
Residuals

Also, if U has a uniform distribution on (0, 1), then what
is the distribution of − ln(U)?

Pr(− ln(U) < x) = Pr(U > exp(−x))

= 1− e−x

which is the CDF of an exponential distribution with
parameter λ = 1.
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Goodness of Fit using the Cox-Snell
Residuals

So, rCSi = Λ̂i(ti) = − ln[Ŝi(ti)] = − ln[Ŝ(ti |covariates)]
should have an exponential distribution with constant
hazard λ = 1 if the estimate Ŝi is accurate, which means
that these values should look like a censored sample from
this exponential distribution. These values are called
generalized residuals or Cox-Snell residuals.
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Martingale Residuals

The martingale residuals are a slight modification of the
Cox-Snell residuals. If the censoring indicator is δi , then

rMi = δi − rCSi

These residuals can be interpreted as an estimate of the
excess number of events seen in the data but not
predicted by the model. We will use these to examine
the functional form of covariates.
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Martingale

Originally, a martingale referred to a betting strategy
where you bet $1 on the first play, then you double the
bet if you lose and continue until you win. This seems
like a sure thing, because at the end of each series when
you finally win, you are up $1. For example,
−1− 2− 4− 8+16 = 1. But this assumes that you have
infinite resources. Really, you have a large probability of
winning $1, and a small probability of losing everything
you have, kind of the opposite of a lottery.
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Martingale

In probability, a martingale is a sequence of random
variables such that the expected value of the next event
at any time is the present observed value, and that no
better predictor can be derived even with all past values
of the series available. At least to a close approximation,
the stock market is a martingale. Under the assumptions
of the proportional hazards model, the martingale
residuals ordered in time form a martingale.
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Using Martingale Residuals

Martingale residuals can be used to examine the
functional form of a numeric variable. We fit the model
without that variable and compute the martingale
residuals. We then plot these martingale residuals
against the values of the variable. We can see curvature,
or a possible suggestion that the variable can be
discretized. We will use this to examine the score and
wtime variables in the hodg data set.
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hodg.mart <- residuals(hodg.cox1,type="martingale")

hodg.cs <- hodg$delta-hodg.mart

plot1r <- function(){

surv.csr = survfit(Surv(hodg.cs,hodg2$delta)~1,type="fleming-harrington")

plot(surv.csr,fun="cumhaz")

abline(0,1)

title("Cumulative Hazard of Cox-Snell Residuals")

}

plot2r <- function(){

mres <- residuals(coxph(hodg.surv~gtype*dtype+wtime,data=hodg2),type="martingale")

plot(hodg2$score,mres,xlab="Karnofsky Score",ylab="Martingale Residuals")

lines(lowess(hodg2$score,mres))

title("Martingale Residuals vs. Karnofsky Score")

}
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hodg.mart <- residuals(hodg.cox1,type="martingale")

hodg.cs <- hodg$delta-hodg.mart

plot3r <- function(){

mres <- residuals(coxph(hodg.surv~gtype*dtype+score,data=hodg2),type="martingale")

plot(hodg2$wtime,mres,xlab="Waiting Time",ylab="Martingale Residuals")

lines(lowess(hodg2$wtime,mres))

title("Martingale Residuals vs. Waiting Time")

print(head(cbind(hodg2$wtime,mres)[order(hodg2$wtime,decreasing=T),]))

}

mres

41 171 -0.6099433

15 102 -1.2045188

43 98 -1.0541449

28 84 -0.5916094

40 84 -0.5065709

29 73 0.9774249
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The line with slope 1
and intercept 0 fits the
curve relatively well, so
we don’t see lack of fit
using this procedure.
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Martingale Residuals vs. Karnofsky Score

The line is almost
straight. It could be
some modest
transformation of the
Karnofsky score would
help, but it might not
make much difference.
Maybe a 5pt difference
above 70 is more
important than below
70.
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Martingale Residuals vs. Waiting Time

The line could suggest
a step function. To see
where the drop is, we
can look at the largest
waiting times and the
associated martingale
residual.
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hodg.mart <- residuals(hodg.cox1,type="martingale")

hodg.cs <- hodg$delta-hodg.mart

plot3r <- function(){

mres <- residuals(coxph(hodg.surv~gtype*dtype+score,data=hodg),type="martingale")

plot(hodg$wtime,mres,xlab="Waiting Time",ylab="Martingale Residuals")

lines(lowess(hodg$wtime,mres))

title("Martingale Residuals vs. Waiting Time")

print(head(cbind(hodg$wtime,mres)[order(hodg$wtime,decreasing=T),]))

}

mres

41 171 -0.6099433

15 102 -1.2045188

43 98 -1.0541449

28 84 -0.5916094

40 84 -0.5065709

29 73 0.9774249

The martingale residuals are all negative for wtime >83 and

positive for the next smallest value.

A reasonable cut-point is 80 days.

We reformulate the model with dichotomized wtime.

David M. Rocke Building and Checking Survival Models October 16, 21, 2025 50 / 66



wt2 <- cut(hodg2$wtime,c(0,80,200),labels=c("short","long"))

hodg.cox2 <- coxph(hodg.surv~gtype*dtype+score+wt2,data=hodg2)

print(drop1(hodg.cox1,test="Chisq"))

Model:

hodg.surv ~ gtype * dtype + score + wtime

Df AIC LRT Pr(>Chi)

<none> 152.36

score 1 167.60 17.2365 3.3e-05 ***

wtime 1 153.64 3.2792 0.07016 .

gtype:dtype 1 155.80 5.4357 0.01973 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

print(drop1(hodg.cox2,test="Chisq")) #New model has better AIC

#and smaller p-values.

Model:

hodg.surv ~ gtype * dtype + score + wt2

Df AIC LRT Pr(>Chi)

<none> 149.03

score 1 168.64 21.6042 3.351e-06 ***

wt2 1 153.64 6.6081 0.01015 *

gtype:dtype 1 152.00 4.9697 0.02580 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Checking for Outliers and Influential
Observations

We will check for outliers using the deviance residuals.
The martingale residuals show excess events or the
opposite, but highly skewed, with the maximum possible
value being 1, but the smallest value can be very large
negative. Martingale residuals can detect unexpectedly
long-lived patients, but patients who die unexpectedly
early show up only in the deviance residual. Influence will
be examined using dfbeta in a similar way to linear
regression, logistic regression, or Poisson regression.
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Deviance Residuals

The deviance residuals are defined by

rDi = sign(rMi )
√
−2

[
rMi + δi ln(δi − rMi )

]
rDi = sign(rMi )

√
−2

[
rMi + δi ln(rCSi )

]
Roughly centered on 0 with approximate standard
deviation 1.
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hodg.mart <- residuals(hodg.cox2,type="martingale")

hodg.dev <- residuals(hodg.cox2,type="deviance")

hodg.dfb <- residuals(hodg.cox2,type="dfbeta")

hodg.preds <- predict(hodg.cox2) #linear predictor

plotr21 <- function(){

plot(hodg.preds,hodg.mart,xlab="Linear Predictor",ylab="Martingale Residual")

title("Martingale Residuals vs. Linear Predictor")

}

plotr22 <- function(){

plot(hodg.preds,hodg.dev,xlab="Linear Predictor",ylab="Deviance Residual")

title("Deviance Residuals vs. Linear Predictor")

}

plotr23 <- function(){

plot(hodg.dfb[,1],xlab="Observation Order",ylab="dfbeta for Graft Type")

title("dfbeta Values by Observation Order for Graft Type")

}

.........
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Martingale Residuals vs. Linear Predictor

The smallest three
martingale residuals in
order are observations
1, 29, and 18.
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Deviance Residuals vs. Linear Predictor

The two largest
deviance residuals are
observations 1 and 29.
Worth examining.
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dfbeta Values by Observation Order for Graft Type

The smallest dfbeta for
graft type is
observation 1.
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dfbeta Values by Observation Order for Disease Type

The smallest two dfbeta
values for disease type
are observations 1 and
16.
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dfbeta Values by Observation Order for Karnofsky Score

The two highest dfbeta
values for score are
observations 1 and 18.
The next three are
observations 17, 29,
and 19. The smallest
value is observation 2.
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dfbeta Values by Observation Order for Dichotomized Waiting Time

The two large values of
dfbeta for dichotomized
waiting time are
observations 15 and 16.
This may have to do
with the discretization
of waiting time.
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dfbeta Values by Observation Order for Graft by Disease

The two largest values
are observations 1 and
16. The smallest value
is observation 35.
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Table: Observations to Examine by Residuals and Influence

Martingale Residuals 1, 29, 18
Deviance Residuals 1, 29
Graft Type Influence 1
Disease Type Influence 1, 16
Karnofsky Score Influence 1, 18 (17, 29, 19)
Waiting Time Influence 15, 16
Graft by Disease Influence 1, 16, 35

The most important observations to examine seem to be
1, 15, 16, 18, and 29.

David M. Rocke Building and Checking Survival Models October 16, 21, 2025 62 / 66



> with(hodg,summary(time[delta==1]))

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.00 41.25 62.50 97.62 83.25 524.00

> with(hodg,summary(wtime))

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.0 16.0 24.0 37.7 55.5 171.0

> with(hodg,summary(score))

Min. 1st Qu. Median Mean 3rd Qu. Max.

20.00 60.00 80.00 76.28 90.00 100.00

> hodg.cox2

coef exp(coef) se(coef) z p

gtypeAuto 0.6651 1.9447 0.5943 1.12 0.2631

dtypeHOD 2.3273 10.2505 0.7332 3.17 0.0015

score -0.0550 0.9464 0.0123 -4.46 8.2e-06

wt2long -2.0598 0.1275 1.0507 -1.96 0.0499

gtypeAuto:dtypeHOD -2.0668 0.1266 0.9258 -2.23 0.0256

> hodg[c(1,15,16,18,29),]

gtype dtype time delta score wtime

1 1 1 28 1 90 24 #early death, good score, low risk grp

15 1 2 77 1 60 102 #high risk grp, long wait, poor score

16 1 2 79 1 70 71 #high risk grp, short wait, poor score

18 2 1 53 1 90 17 #early death, good score, med risk grp

29 2 2 30 1 90 73 #early death, good score, med risk grp
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Action Items

Unusual points may need checking, particularly if
the data are not completely cleaned. In this case,
observations 15 and 16 may show some trouble with
the dichotomization of waiting time, but it still may
be useful.

The two largest residuals seem to be due to
unexpectedly early deaths, but unfortunately this
can occur.
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If hazards don’t look proportional, then we may
need to use strata, between which the base hazards
are permitted to be different. For this problem, the
natural strata are the two diseases, because they
could need to be managed differently anyway.

A main point that we want to be sure of is the
relative risk difference by disease type and graft
type.
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Table: Linear Risk Predictors for Lymphoma

Disease Graft Type Linear Predictor
Non-Hodgkin Allogenic 0
Non-Hodgkin Autologous 0.6651
Hodgkin’s Allogenic 2.3273
Hodgkin’s Autologous 0.9256

For Non-Hodgkin, the allogenic graft is better. For
Hodgkin’s, the autologous graft is much better.
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