Extensions to the Cox Model Time Dependent Covariates

David M. Rocke

October 28, November 4, 2025

Bone Marrow Transplant Data

- Copelan et al. (1991) study of allogenic bone marrow transplant therapy for acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).
- Possible intermediate events are graft vs. host disease (GVHD), an immunological rejection response to the transplant, and platelet recovery, a return of platelet count to normal levels. One or the other, both in either order, or neither may occur.
- End point events are relapse of the disease or death.
- Any or all of these events may be censored.

KMsurv bmt data

The bmt data frame has 137 rows and 22 columns.

This data frame contains the following columns:

O-Platelets Never Returned to Normal

```
group
        Disease Group 1-ALL, 2-AML Low Risk, 3-AML High Risk
t1
        Time To Death Or On Study Time
t.2
        Disease Free Survival Time (Time To Relapse, Death Or End Of Study)
d1
        Death Indicator 1-Dead 0-Alive
d2
        Relapse Indicator 1-Relapsed, O-Disease Free
d.3
        Disease Free Survival Indicator 1-Dead Or Relapsed, O-Alive Disease Free)
        Time To Acute Graft-Versus-Host Disease
ta
da
        Acute GVHD Indicator 1-Developed Acute GVHD 0-Never Developed Acute GVHD)
        Time To Chronic Graft-Versus-Host Disease
t.c
        Chronic GVHD Indicator 1-Developed Chronic GVHD
dc
          O-Never Developed Chronic GVHD
        Time To Platelet Recovery
tp
        Platelet Recovery Indicator 1-Platelets Returned To Normal,
dp
```

KMsurv bmt data

```
z1
        Patient Age In Years
z^2
        Donor Age In Years
z.3
        Patient Sex: 1-Male, 0-Female
z4
        Donor Sex: 1-Male, 0-Female
        Patient CMV Status: 1-CMV Positive, 0-CMV Negative
25
        Donor CMV Status: 1-CMV Positive, 0-CMV Negative
26
z7
        Waiting Time to Transplant In Days
        FAB: 1-FAB Grade 4 Or 5 and AML, 0-Otherwise
z8
z9
        Hospital: 1-The Ohio State University, 2-Alferd, 3-St. Vincent,
          4-Hahnemann
```

MTX Used as a Graft-Versus-Host- Prophylactic: 1-Yes O-No

210

Bone Marrow Transplant Example

- The main endpoint is disease-free survival (t2 and d3) for the three risk groups, ALL, AML Low Risk, and AML High Risk.
- We are also interested in possibly using the covariates z1–z10 to adjust for other factors. We can do this with stepwise regression or hand examination of the results of adding or removing variables.
- In addition, the time-varying covariates for acute GVHD, chronic GVHD, and platelet recovery may be useful.

Time-Dependent Covariates

- A *time-dependent covariate* is one that changes value in the course of the study.
- For variables like age that change in a linear manner with time, we can just use the value at the start.
- But it may be plausible that when and if GVHD occurs, the risk of relapse or death increases, and when and if platelet recovery occurs, the risk decreases.

Formulation in R

- We form a variable precovery which is = 0 before platelet recovery and is = 1 after platelet recovery, if it occurs.
- For each subject where platelet recovery occurs, we set up multiple records (lines in the data frame); for example one from t = 0 to the time of platelet recovery, and one from that time to relapse, or death, or end of study.
- We do the same for acute GVHD and chronic GVHD.
- For each record, the covariates are constant.

```
id group t1 t2 d1 d2 d3 ta da tc dc tp dp 1 ALL 2081 2081 0 0 0 67 1 121 1 13 1
```

times are

```
t = 0
         time of transplant
tp = 13     platelet recovery
ta = 67 acute GVHD onset
tc = 121 chronic GVHD onset
t2 = 2081
          end of study, patient not relapsed or dead
id group
          tstart tstop agvhd cgvhd precovery status
    ALL
               0
                    13
    ALL
              13 67
                                                 0
    ALL.
              67
                   121
                                                 0
    ALL
             121 2081
                                                   #this status could be 1
```

- Let A, C, and P stand for the event occurs for that patient at some time. Each of the eight possible combinations of A or not-A, with C or not-C, with P or not-P occurs in this data set.
- A always occurs before C and P always occurs before C if both occur; this is for medical reasons.
- Thus there are ten kinds of patients in the data set: None, A, C, P, AC, AP, PA, PC, APC, and PAC.
- There could be as many as 1 + 3 + (3)(2) + 6 = 16
- This is why a package to assist with this is helpful

Possible and Actual Event Sequences

Sequence	Occurs?	Sequence	Occurs?
None	Υ	CP	_
Α	Υ	PC	Υ
C	Υ	ACP	
Р	Υ	APC	Υ
AC	Υ	CAP	
CA	_	CPA	
AP	Υ	PAC	Υ
PA	Υ	PCA	_

- Different subjects could have 1, 2, 3, or 4 intervals depending on which of acute GVHD, chronic GVHD, and/or platelet recovery occurred.
- The final interval for any subject has status = 1 if the subject relapsed or died at the end of that interval, otherwise the status is 0.
- Any earlier intervals have status = 0.
- Even though there might be multiple lines in the data frame, there is never more than one event, so no alterations need be made in the estimation procedures or in the interpretation of the output.
- The function tmerge in the survival package eases the process of constructing the new data frame

KMsurv bmt data

```
21
        Patient Age In Years
z2
        Donor Age In Years
z3
        Patient Sex: 1-Male, 0-Female
z.4
        Donor Sex: 1-Male, 0-Female
z_5
        Patient CMV Status: 1-CMV Positive, 0-CMV Negative
26
        Donor CMV Status: 1-CMV Positive, 0-CMV Negative
        Waiting Time to Transplant In Days
27
z8
        FAB: 1-FAB Grade 4 Or 5 and AML, 0-Otherwise
        Hospital: 1-The Ohio State University, 2-Alferd, 3-St. Vincent,
z.9
          4-Hahnemann
```

MTX Used as a Graft-Versus-Host- Prophylactic: 1-Yes O-No

Starting with all these covariates, we eliminated sequentially Patient and Donor Sex, Patient and Donor CMV Status, Waiting time, and MTX.

z10

Fixed Covariates for the bmt Data

```
require(KMsurv)
require(survival)
data(bmt)
nsubj <- dim(bmt)[1]
id <- 1:nsubj
bmt1 <- data.frame(id,bmt)  #to identify the subject across multiple lines
bmt1$group <- factor(bmt1$group,labels=c("ALL","AML-Low","AML-High"))</pre>
bmt1$z9 <- factor(bmt1$z9) #hospital factor</pre>
bmt1.surv <- with(bmt1,Surv(t2,d3))</pre>
> drop1(coxph(bmt1.surv~group+z1*z2+z8+z9.data=bmt1).test="Chisa")
Single term deletions
Model:
bmt1.surv ~ group + z1 * z2 + z8 + z9
      Df
            ATC LRT Pr(>Chi)
<none>
         719.58
group 2 721.76 6.1738 0.0456426 *
                                         #ALL, AML-High, AML-Low
z8 1 726.43 8.8504 0.0029303 **
                                         #1-FAB Grade 4 Or 5 and AML, 0-Else
z9 3 725.79 12.2066 0.0067079 **
                                         #Hospital
#Patient Age by Donor Age interaction
```

```
n= 137, number of events= 83
                        exp(coef) se(coef) z Pr(>|z|)
                  coef
groupAML-Low -0.7759558
                        0.4602636 0.3635689 -2.134 0.032820 *
groupAML-High -0.2379396 0.7882503 0.3577568 -0.665 0.505995
z1
            -0.0982054 0.9064627 0.0378372 -2.595 0.009446 **
z^2
           -0.0823307 0.9209674 0.0301442 -2.731 0.006310 **
z8
            0.8341968 2.3029635 0.2822471 2.956 0.003121 **
           0.7772511 2.1754838 0.3393736 2.290 0.022007 *
z92
z93
           -0.2766900 0.7582896 0.3365979 -0.822 0.411066
z94
           -0.8881221 0.4114276 0.4204024 -2.113 0.034639 *
z1:z2
            0.0035154 1.0035216 0.0009591 3.665 0.000247 ***
```

 $coxph(formula = bmt1.surv \sim group + z1 * z2 + z8 + z9, data = bmt1)$

> summary(coxph(bmt1.surv~group+z1*z2+z8+z9,data=bmt1))

We will use the two age variables and FAB score in the following. We omit the hospital effect since the significance test is possibly invalid (hospital-level effect, not patient effect).

Call:

```
> summary(coxph(bmt1.surv~group,data=bmt1))
               coef exp(coef) se(coef)
                                           z \Pr(>|z|)
groupAML-Low -0.5742
                       0.5632
                               0.2873 - 1.999
                                              0.0457 *
groupAML-High 0.3834 1.4673 0.2674 1.434
                                             0.1516
> summary(coxph(bmt1.surv~group+z8,data=bmt1))
                coef exp(coef) se(coef)
                                           z Pr(>|z|)
groupAML-Low -0.90450
                       0.40475 0.32031 -2.824 0.00475 **
groupAML-High -0.05195 0.94938 0.32060 -0.162 0.87128
z8
             0.76950 2.15868 0.27032 2.847 0.00442 **
```

With group alone, AML-High is riskier than ALL and AML-Low is less risky. The FAB variable z8, which is 1 only for AML, 1/3 of the AML-Low cases and 60% of the AML-High cases, this absorbs some of the risk of the riskiest AML cases, so that the group effect shows both AML groups as less risky than ALL.

```
> newgroup <- unclass(bmt1$group)+bmt1$z8*3</pre>
                                        #five different numerical values
> with(bmt1,table(unclass(group)+z8*3))
   2 3 5 6
38 36 18 18 27
> with(bmt1,table(group,z8))
        z.8
group
          0 1
 ALL 38 0
 AML-Low 36 18
 AML-High 18 27
> newgroup <- factor(newgroup,
  labels=c("ALL","AML-Low","AML-High","AML-Low+FAB","AML-High+FAB"))
> summary(coxph(bmt1.surv~newgroup,data=bmt1))
                     coef exp(coef) se(coef) z Pr(>|z|)
newgroupAML-Low -0.7759
                            0.4603 0.3384 - 2.293 0.02185 *
newgroupAML-High -0.2144 0.8070 0.3791 -0.566 0.57172
newgroupAML-Low+FAB -0.2829 0.7536 0.3653 -0.774 0.43868
newgroupAML-High+FAB 0.7935 2.2112 0.2903 2.734 0.00626 **
> AIC(coxph(bmt1.surv~newgroup,data=bmt1))
[1] 731.9691
> AIC(coxph(bmt1.surv~group+z8,data=bmt1))
4 D > 4 A > 4 B > 4 B > B = 9000
```

Construction of TDC Data Set

Using tmerge we set up the time-dependent covariates data set.

```
bmt2 <- tmerge(bmt1,bmt1,id=id,tstop=t2)  #sets up new data set
bmt2 <- tmerge(bmt2,bmt1,id=id,agvhd=tdc(ta))  #adds aghvd as tdc
bmt2 <- tmerge(bmt2,bmt1,id=id,cgvhd=tdc(tc))  #adds cghvd as tdc
bmt2 <- tmerge(bmt2,bmt1,id=id,precovery=tdc(tp)) #adds platelet recovery as tdc
status <- as.integer(with(bmt2,(tstop==t2 & d3)))
# status only = 1 if at end of t2 and not censored
bmt2 <- data.frame(bmt2,status)
bmt2.surv <- with(bmt2,Surv(time=tstart,time2=tstop,event=status,type="counting"))
#counting process formulation of Surv</pre>
```

	1d ;	group		t2 2081				ta 67	da 1	tc 121				21 26				tstop 13		cgvhd 0	precovery		
2	1						0	67	1		1	13		26			0 13	67	0	0	0	C	
-	1			2081			-	67	1		1	13	_	26		0	67	121	1	-	1	-	
3 4	1			2081	-	-	0	67	1	121	1	13		26			121	2081	1	1	1	-	
4	1	ALL	2001	2001	U	U	U	01	1	121	1	13	1	20	33	U	121	2001	1	1	1		,
5	2	AI.I.	1602	1602	0	0	0	1602	0	139	1	18	1	21	37	0	0	18	0	0	0	0)
6	2	ALI.	1602	1602	0	0	0	1602	0	139	1	18	1	21	37	0	18	139	0	0	1	C)
7	2							1602	0	139	1	18		21		0	139	1602	0	1	1)
					_		-		_		_		_			-			_	_	_	_	
8	3	ALL	1496	1496	0	0	0	1496	0	307	1	12	1	26	35	0	0	12	0	0	0	C)
9	3	ALL	1496	1496			0	1496	0	307	1	12	1	26	35	0	12	307	0	0	1	C)
10	3	ALL	1496	1496	0	0	0	1496	0	307	1	12	1	26	35	0	307	1496	0	1	1	C)
11	4	ALL	1462	1462	0	0	0	70	1	95	1	13	1	17	21	0	0	13	0	0	0	C)
12	4	ALL	1462	1462	0	0	0	70	1	95	1	13	1	17	21	0	13	70	0	0	1	C)
13	4	ALL	1462	1462	0	0	0	70	1	95	1	13	1	17	21	0	70	95	1	0	1	C)
14	4	ALL	1462	1462	0	0	0	70	1	95	1	13	1	17	21	0	95	1462	1	1	1	C)
42				1167		-	-	39	1	487		1167		27		0	0	39	0	0	0	-	
43				1167		-		39	1	487		1167		27		0	39	487	1	-	_	-	
44	14	ALL	1167	1167	0	0	0	39	1	487	1	1167	0	27	22	0	487	1167	1	1	0	C)
45		ALL		418		0	1		0	220	1	21		18			0	21	0	0	0	-	
46		ALL	418	418	1	0	1	418	0	220	1	21	_	18		-	21	220	0	0	1	-	
47	15	ALL	418	418	1	0	1	418	0	220	1	21	1	18	14	0	220	418	0	1	1	1	-
48	16	AT.T.	417	383	1	4	1	417	0	417	0	16		15	20	0	0	16	0	0	0	C	,
40		ALL ALL	417	383	1	1	_		0	417	0	16	_	15		0	16	383	0	0	1	1	
49	10	MLL	411	303	1	1	1	417	U	411	U	10	1	10	20	U	16	303	U	U	1	1	-

Add Time-Dependent Covariates

```
> summary(coxph(bmt2.surv~group+z1*z2+z8+agvhd+cgvhd+precovery,data=bmt2))

n= 341, number of events= 83

coef exp(coef) se(coef) z Pr(>|z|)
groupAML-Low -1.0385144 0.3539802 0.3582204 -2.899 0.00374 **
groupAML-High -0.3804809 0.6835326 0.3748670 -1.015 0.31012
```

```
-0.0733511
                        0.9292745 0.0359557 -2.040 0.04135 *
21
z^2
           -0.0764062 0.9264398 0.0301965 -2.530 0.01140 *
             0.8057002
                        2.2382632
                                  0.2842726 2.834 0.00459 **
z8
agvhd
            0.1505649 1.1624908
                                  0.3068484 0.491 0.62365
cgvhd
           -0.1161359
                        0.8903542
                                  0.2890463 -0.402 0.68784
precovery
           -0.9411227
                        0.3901895
                                  0.3478611 -2.705
                                                   0.00682 **
z1:z2
             0.0028946 1.0028988
                                  0.0009435 3.068
                                                   0.00216 **
```

Neither acute GVHD nor chronic GVHD has a statistically significant effect here or in a model with the other one removed. Platelet recovery is highly significant.

```
> summary(coxph(bmt2.surv~group+z1*z2+z8+precovery,data=bmt2))
 n= 341, number of events= 83
                       exp(coef) se(coef) z Pr(>|z|)
                 coef
groupAML-Low -1.0325200
                      0.3561084 0.3532019 -2.923 0.00346 **
groupAML-High -0.4138881 0.6610749 0.3652095 -1.133 0.25709
           -0.0709647 0.9314948 0.0354533 -2.002 0.04532 *
21
z^2
           -0.0760524  0.9267677  0.0300071  -2.534  0.01126 *
           0.8119262 2.2522421 0.2832310 2.867 0.00415 **
z8
precovery -0.9835053 0.3739978 0.3379970 -2.910 0.00362 **
z1:z2
          0.0028716 1.0028758 0.0009355 3.070 0.00214 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
            exp(coef) exp(-coef) lower .95 upper .95
groupAML-Low
               0.3561
                        2.8081
                                 0.1782
                                          0.7116
groupAML-High
              0.6611 1.5127
                                 0.3231 1.3524
z1
              0.9315 1.0735 0.8690 0.9985
z^2
               0.9268 1.0790 0.8738 0.9829
               2.2522 0.4440 1.2928 3.9238
z8
               0.3740 2.6738
                                 0.1928
                                          0.7254
precovery
z1:z2
               1.0029
                        0.9971
                                 1.0010
                                          1.0047
```

Model Checking

We can use all the same tools for model checking in data sets with time dependent covariates as we do with data sets with only fixed covariates. This includes

- Schoenfeld residuals correlated with "time" to test for proportionality of hazards.
- Martingale residuals plotted vs numeric covariates to check for functional form.
- Martingale residuals and deviance residuals plotted vs the linear predictor to identify possible outliers.
- Columns of dfbeta to identify possible influential points: points whose removal changes the fit importantly.

We won't use the Cox-Snell residuals since this plot has low capacity to detect problems.

Model Checking

The original data set is 137 rows and 22 columns, corresponding to 137 patients with a number of events that depends on the type of event:

Number of Events of Various Types					
d1	death	81			
d2	relapse	42			
d3	disease-free survival	83			
da	acute gvhd	26			
dc	chronic gvhd	61			
dp	platelet recovery	120			

Model checking when using the original data set is as we have seen before.

Model Checking

Number of Events of Various Types					
death without relapse	41				
relapse then death	40				
relapse only	2				
neither death nor relapse	54				
death without platelet recovery	16				
platelet recovery then death	65				
platelet recovery without death	55				
neither death nor platelet recovery	1				

55/120 = 45.8% Survival rate with precovery 1/17 = 5.9% Survival rate without precovery

Number of Residuals

The original data set is 137 rows and 22 columns, corresponding to 137 patients. The data set for time-dependent analysis is 341 rows by 29 columns. This means that there are 341 different patient by time-dependent covariate intervals, about an average of 2.5 intervals per patient. The first extra column is id one unique value per patient, and the others are tstart, tstop, delimiting the intervals, agvhd, cgvhd, precovery, stating which events have already occurred before that interval, and status indicating whether the interval terminates with recurrence or death.

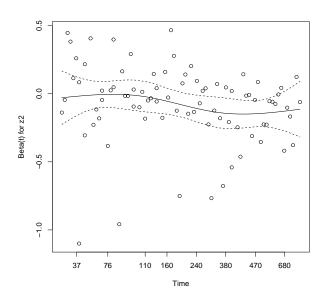
Number of Residuals

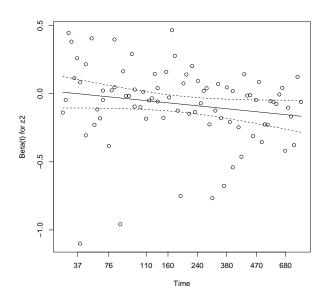
An argument to the residual command is collapse which has the default value collapse = F = FALSE which gives us 341 residuals or collapse = id which combines all the residuals for each patient, resulting in 137 residuals. Both approaches can be useful. The first gives us one residual per patient per values of the time-dependent covariates and the second has one residual per patient. If plotted vs. something in the data set it has to be from bmt2 in the first case and bmt1 in the second, even though the residual vector is derived from the model using the data set bmt2.

Schoenfeld Residuals

```
bmt2.cox <- coxph(bmt2.surv~group+z1*z2+z8+precovery,data=bmt2)</pre>
bmt2.zph <- cox.zph(bmt2.cox)</pre>
print(bmt2.zph)
plot.zph <- function(i,df=4){</pre>
                                     #df = 4 is the default degree of the spline
  plot(bmt2.zph[i],df=df)
                                     #df = 2 uses linear splines
           chisq df
          1.0458 2 0.59
                               #Disease
group
          0.6625 1 0.42
z1
                               #Patient Age
7.2
          2.3980 1 0.12
                               #Donor Age
z8
     0.3216 1 0.57
                               #FAB Score
precovery 0.0721 1 0.79
                               #Platelet Recovery
z1:z2 0.9210 1 0.34
                               #Age Interaction
GLOBAL 6.3820 7 0.50
                               #No major signs of non-proportionality
pdf("Schoenfeld3.pdf")
                            #These are for z2 = donor age
plot.zph(3)
                            #This is column 3/7 of the scaled schoenfeld resids
dev.off()
pdf("Schoenfeld3a.pdf")
plot.zph(3,df=2)
```

dev.off()





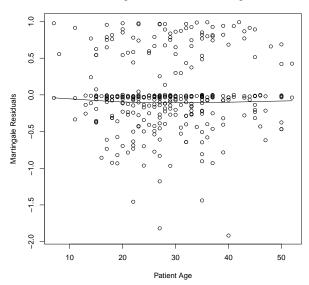
Martingale Residuals

```
plot.mres.z1 <- function(){
  mres <- residuals(coxph(bmt2.surv~group+z2+z8+precovery,data=bmt2),</pre>
      type="martingale")
  plot(bmt2$z1,mres,xlab="Patient Age",ylab="Martingale Residuals")
  lines(lowess(bmt2$z1.mres))
  title("Martingale Residuals vs. Patient Age")
plot.mres.z2 <- function(){</pre>
  mres <- residuals(coxph(bmt2.surv~group+z1+z8+precovery,data=bmt2),</pre>
      type="martingale")
  plot(bmt2$z2,mres,xlab="Donor Age",ylab="Martingale Residuals")
  lines(lowess(bmt2$z2.mres))
  title("Martingale Residuals vs. Donor Age")
```

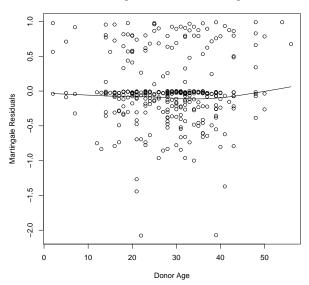
Martingale Residuals

```
plot.mres.z12 <- function(){
  mres <- residuals(coxph(bmt2.surv~group+z1+z2+z8+precovery,data=bmt2),</pre>
      type="martingale")
  plot(bmt2$z1*bmt2$z2,mres,xlab="Patient Interaction",
     ylab="Martingale Residuals")
  lines(lowess(bmt2$z1*bmt2$z2.mres))
  title("Martingale Residuals vs. Patient Interaction")
plot.mres.z7 <- function(){</pre>
  mres <- residuals(coxph(bmt2.surv~group+z1*z2+z8+precovery,data=bmt2),</pre>
      type="martingale")
  plot(bmt2$z7,mres,xlab="Waiting Time",ylab="Martingale Residuals")
  lines(lowess(bmt2$z7.mres))
  title("Martingale Residuals vs. Waiting Time")
```

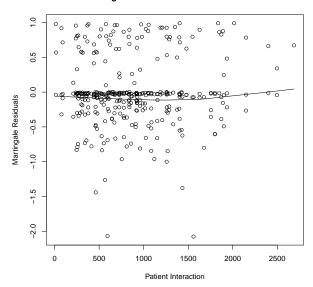
Martingale Residuals vs. Patient Age



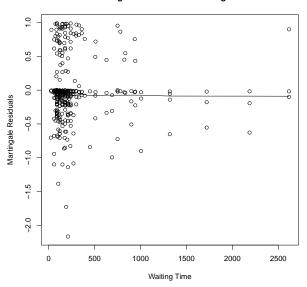
Martingale Residuals vs. Donor Age



Martingale Residuals vs. Patient Interaction



Martingale Residuals vs. Waiting Time



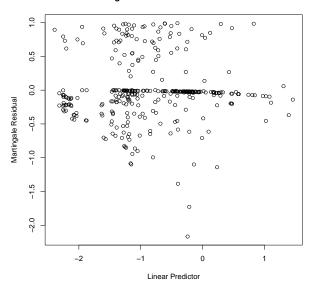
Martingale and Deviance Residuals

```
bmt2.mart <- residuals(bmt2.cox,type="martingale")
bmt2.dev <- residuals(bmt2.cox,type="deviance")
bmt2.dfb <- residuals(bmt2.cox,type="dfbeta")
bmt2.preds <- predict(bmt2.cox)

plotr.mart <- function(){
    plot(bmt2.preds,bmt2.mart,xlab="Linear Predictor",ylab="Martingale Residual")
    title("Martingale Residuals vs. Linear Predictor")
}

plotr.dev <- function(){
    plot(bmt2.preds,bmt2.dev,xlab="Linear Predictor",ylab="Deviance Residual")
    title("Deviance Residuals vs. Linear Predictor")
}</pre>
```

Martingale Residuals vs. Linear Predictor

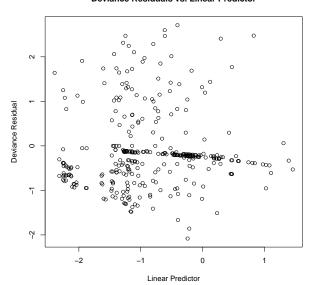


Three smallest martingale residuals are from patient id's 14, 100, and 103.

```
> bmt1[c(14,100,103),imp.vars1]
      id group t1 t2 d1 d2 d3 ta da tc dc tp dp z1 z2 z8
14 14      ALL 1167 1167 0 0 0 39 1 487 1 1167 0 27 22 0
100 100 AML-High 2024 2024 0 0 0 2024 0 180 1 16 1 35 41 1
103 103 AML-High 845 845 0 0 0 845 0 845 0 20 1 40 39 1
```

Patient 14 is in the medium-risk group, had a long survival time (censored), but early AGVHD and CGVHD, and no platelet recovery. Patients 100 and 103 are in the highest risk-group, had long survival times (censored), and early platelet recovery.

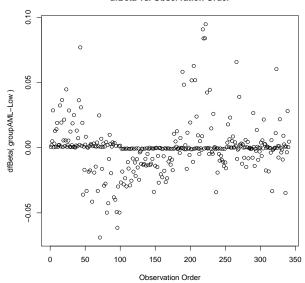
Deviance Residuals vs. Linear Predictor

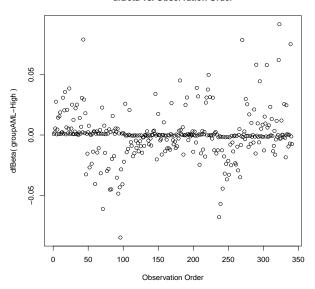


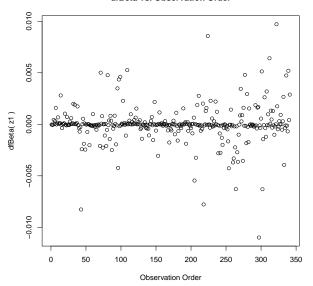
No unusualy low or high deviance residuals.

DFBETA

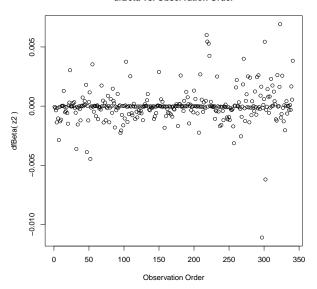
The residuals = dfbeta matrix is 341 by 7 with rows corresponding with patient×intervals and columns corresponding to the coefficients groupAML-Low, groupAML-High, z1, z2, z8, precovery, z1:z2.



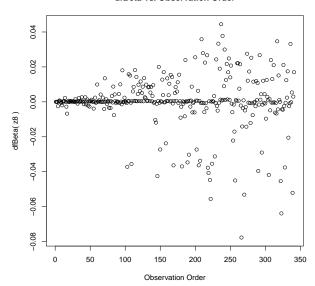


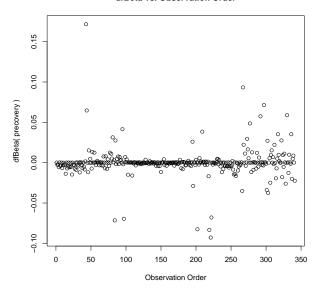


Observations 88 and 128 high and 14, 84, and 116 low.

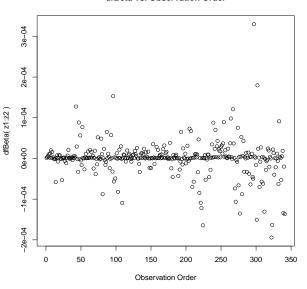


Observations 84 and 129 high and 116 and 118 low.





Observation 14 high and 30, 36, 77, 85, 86, 87 low.



Observation 116 high.

```
> bmt1[c(116,118,128,129,84:88),imp.vars1]
                       t2 d1 d2 d3
                                      ta da
                                              tc dc tp dp z1 z2 z8
     id
           group
116 116 AML-High
                   93
                                      93
                                              93
118 118 AML-High
                  183
                      183
                                     183
                                             130
                                                  1 21
128 128 AML-High 74 74
                                     29
                                                  0 24
                                                        1 41
                                              74
129 129 AML-High
                                                        0 27 36
                 16
                       16
                                    16
                                              16
                                                  0 16
84
     84
         AML-Low
                 10
                       10
                                      10
                                              10
                                                  0 10
                                                        0 34 54
85
     85
         AML-Low 53
                       53
                                     53
                                              53
                                                  0 53
                                                        0 33 41
         AML-Low
                                                  0.80
86
     86
                   80
                       80
                                      10
                                              80
                                                        0 30 35
87
    87
         AML-Low
                   35
                       35
                                      35
                                              35
                                                  0 35
                                                        0 23 25
         AMI.-I.ow 1499 248
                                  1 1499
                                            1499
                                                        1 35 18
88
     88
```

Observations 116 and 118 have very young patient/donor combinations. These are extreme in the linear function of age and especially in the product. Observations 128 and 129 are in AML-High but no z8 FAB extra risk and have very early deaths. Observations 84–87 have the lowest risk group, AML-Low + no extra FAB risk, but early deaths. Observation 88 is a low risk (of progression-free survival) with early platelet recovery but relapsed at a long interval.

This kind of analysis can identify errors. It can identify problems like use of linear age. Some outliers are explicable from unusual predictive values. The plots we use can identify these unusual combinations much more easily than just staring at the data.

This kind of analysis is even more important in early stages of the project because it can identify specious observations as well as influential ones.

Recurrent Events

- Sometimes an appropriate analysis requires consideration of recurrent events.
- A patient with arthritis may have more than one flareup. The same is true of many recurring-remitting diseases.
- In this case, we have more than one line in the dataframe, but each line may have an event.
- We have to use a "robust" variance estimator to account for correlation of time-to-events within a patient.

Bladder Cancer Data Set

The bladder cancer dataset from Kleinbaum and Klein contains recurrent event outcome information for eighty-six cancer patients followed for the recurrence of bladder cancer tumor after transurethral surgical excision (Byar and Green 1980). The exposure of interest is the effect of the drug treatment of thiotepa. Control variables are the initial number and initial size of tumors. The data layout is suitable for a counting processes approach.

This drug is still a possible choice for some patients. Another therapeutic choice is Bacillus Calmette-Guerin (BCG), a live bacterium related to cow tuberculosis.

Bladder Cancer Data Set

Variable	Definition			
id	Patient unique ID			
status	for each time interval			
	1 = recurred			
	2 = censored			
interval	1 = first recurrence, etc.			
intime	tstop — tstart (all times in months)			
tstart	start of interval			
tstop	end of interval			
tx	treatment code, $1={\sf thiotepa}$			
num	number of initial tumors			
size	size of initial tumors (cm)			

- There are 85 patients and 190 lines in the dataframe, meaning that many patients have more than one line.
- Patient 1 with 0 observation time was removed.
- Of the 85 patients, 47 had at least one recurrence and 38 had none.
- 18 patients had exactly one recurrence.
- There were up to 4 recurrences in a patient.
- Of the 190 intervals, 112 terminated with a recurrence and 78 were censored.

- Different intervals for the same patient are correlated.
- Of the 85 patients, 47 had at least one recurrence and 38 had none.
- Of the 190 intervals, 112 terminated with a recurrence and 78 were censored.
- Is the effective sample size 47 or 112? This might narrow confidence intervals by as much as a factor of $\sqrt{112/47}=1.54$
- What happens if I have 5 treatment and 5 control values and want to do a t-test and I then duplicate the 10 values as if the sample size was 20? This falsely narrows confidence intervals by a factor of $\sqrt{2} = 1.41$.

	id	status	interval	intime	tstart	tstop	tx	\mathtt{num}	size	
2	2	0	1	1	0	1	0	1	3	
3	3	0	1	4	0	4	0	2	1	
6	6	1	1	6	0	6	0	4	1	
7	6	0	2	4	6	10	0	4	1	
•	·	•	_	-	·		·	-	_	
1	09	1	1	5	0	5	0	1	3	
					-			_		
1	1 9	0	2	13	5	18	0	1	3	
•										
1:	2 10	1	1	12	0	12	0	1	1	
1	3 10	1	2	4	12	16	0	1	1	
1	4 10	0	3	2	16	18	0	1	1	
2	2 14	1	1	3	0	3	0	3	1	
2	3 14	1	2	6	3	9	0	3	1	
2	4 14	1	3	12	9	21	0	3	1	
2	5 14	0	4	2	21	23	0	3	1	
2	6 15	1	1	7	0	7	0	2	3	
2	7 15	1	2	3	7	10	0	2	3	
		1			10		0		3	
		1					0			
2	 6 15 7 15 8 15	1	1	7	0	7	0	2	3	;

```
require(survival)
vars <- c("id","status","interval","intime","tstart","tstop","tx","num","size")</pre>
bladder <- read.table("bladder.dat",header=F,col.names=vars)</pre>
bladder <- bladder[-1,] #remove subject with 0 observation time
#bladder.dat from Kleinbaum and Klein with lines before and after data removed
bladder.surv <- with(bladder,Surv(time=tstart,time2=tstop,event=status,
                   type="counting"))
bladder.cox1 <- coxph(bladder.surv~tx+num+size,data=bladder)</pre>
#biased variance co-variance matrix
bladder.cox2 <- coxph(bladder.surv~tx+num+size+cluster(id),data=bladder)
#unbiased though this reduces power
bladder.cox3 <- coxph(bladder.surv~tx+num+cluster(id),data=bladder)
#remove non-significant size variable
```

```
> summarv(bladder.cox1)
Call:
coxph(formula = bladder.surv ~ tx + num + size, data = bladder)
 n= 190, number of events= 112
        coef exp(coef) se(coef) z Pr(>|z|)
tx -0.41164 0.66256 0.19989 -2.059 0.039466 *
num 0.16367 1.17782 0.04777 3.426 0.000611 ***
size -0.04108 0.95975 0.07029 -0.584 0.558967
> summary(bladder.cox2)
Call:
coxph(formula = bladder.surv ~ tx + num + size + cluster(id),
   data = bladder)
 n= 190, number of events= 112
        coef exp(coef) se(coef) robust se z Pr(>|z|)
tx -0.41164 0.66256 0.19989 0.24876 -1.655 0.09798
     num
size -0.04108 0.95975 0.07029 0.07421 -0.554 0.57991
```

```
> summary(bladder.cox1)
```

```
exp(coef) exp(-coef) lower .95 upper .95 tx 0.6626 1.509 0.4478 0.9803 num 1.1778 0.849 1.0726 1.2934 size 0.9598 1.042 0.8362 1.1015
```

> summary(bladder.cox2)

```
exp(coef) exp(-coef) lower .95 upper .95
tx 0.6626 1.509 0.4069 1.079
num 1.1778 0.849 1.0504 1.321
size 0.9598 1.042 0.8298 1.110
```

```
> summary(bladder.cox1)
Concordance= 0.624 (se = 0.03)
Rsquare= 0.074 (max possible= 0.992)
Likelihood ratio test= 14.66 on 3 df.
                                       p=0.002127
Wald test
                    = 15.9 on 3 df,
                                       p=0.001187
Score (logrank) test = 16.18 on 3 df, p=0.001042
> summary(bladder.cox2)
Concordance= 0.624 (se = 0.03)
Rsquare= 0.074 (max possible= 0.992)
Likelihood ratio test= 14.66 on 3 df. p=0.002127
Wald test
                    = 11.19 on 3 df, p=0.01073
Score (logrank) test = 16.18 on 3 df, p=0.001042, Robust = 10.84 p=0.01263
  (Note: the likelihood ratio and score tests assume independence of
    observations within a cluster, the Wald and robust score tests do not).
```

These are the ratios of correct confidence intervals to naive ones.

```
> summary(bladder.cox3)
Call:
coxph(formula = bladder.surv ~ tx + num + cluster(id), data = bladder)
 n= 190, number of events= 112
       coef exp(coef) se(coef) robust se     z Pr(>|z|)
tx -0.41172 0.66251 0.20029 0.25153 -1.637 0.10166
num 0.17001 1.18531 0.04646 0.05636 3.016 0.00256 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
   exp(coef) exp(-coef) lower .95 upper .95
      0.6625 1.5094 0.4047 1.085
tx
num 1.1853 0.8437 1.0613 1.324
Concordance= 0.623 (se = 0.029)
Rsquare= 0.073 (max possible= 0.992)
Likelihood ratio test= 14.31 on 2 df, p=0.0007799
Wald test = 10.24 on 2 df. p=0.005969
Score (logrank) test = 15.81 on 2 df, p=0.0003696, Robust = 10.6 p=0.005001
```

(Note: the likelihood ratio and score tests assume independence of observations within a cluster, the Wald and robust score tests do not).