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hodg Lymphoma Data Set from KMsurv

This data set consists of information on 43 bone marrow
transplant patients at Ohio State University (Avalos
1993). The patients had either Hodgkin’s or
non-Hodgkins lymphoma and were treated either with an
allogenic (HLA-matched sib) or autogenic bone marrow
transplant. In addition to the time to death or relapse
(or censored), the data set has the Karnofsky score and
the waiting time to transplant in months.
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hodg Lymphoma Data Set from KMsurv

gtype Graft type
1=allogenic,
2=autologous

dtype Disease type
1=Non Hodgkin lymphoma,
2=Hodgkins disease

time Time to death or relapse, days
delta Death/relapse indicator

0=alive,
1=dead

score Karnofsky score
wtime Waiting time to transplant in months
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Karnofsky Score

Score 80–100: Able to carry on normal activity and to
work; no special care needed.
Score 50–70: Unable to work; able to live at home and
care for most personal needs; varying amount of
assistance needed.
Score 10-60: Unable to care for self; requires equivalent
of institutional or hospital care; disease may be
progressing rapidly.
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> hodg2 <- hodg

> hodg2$gtype <- with(hodg,factor(gtype,labels=c("Allo","Auto")))

> table (hodg2$gtype,hodg$gtype)

1 2

Allo 16 0

Auto 0 27

> hodg2$dtype <- with(hodg,factor(dtype,labels=c("NHL","HOD")))

> table (hodg2$dtype,hodg$dtype)

1 2

NHL 23 0

HOD 0 20

> with(hodg2,(table(gtype,dtype)))

dtype

gtype NHL HOD

Allo 11 5

Auto 12 15
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> hodg.surv <- with(hodg2,Surv(time,delta))

> hodg.cox1 <- coxph(hodg.surv~gtype*dtype+score+wtime,data=hodg2)

> summary(hodg.cox1)

n= 43, number of events= 26

coef exp(coef) se(coef) z Pr(>|z|)

gtypeAuto 0.63940 1.89534 0.59372 1.077 0.28151

dtypeHOD 2.76033 15.80504 0.94738 2.914 0.00357 **

score -0.04948 0.95172 0.01242 -3.984 6.77e-05 ***

wtime -0.01656 0.98357 0.01021 -1.623 0.10461

gtypeAuto:dtypeHOD -2.37093 0.09339 1.03548 -2.290 0.02204 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

exp(coef) exp(-coef) lower .95 upper .95

gtypeAuto 1.89534 0.52761 0.59199 6.0682

dtypeHOD 15.80504 0.06327 2.46821 101.2066

score 0.95172 1.05073 0.92884 0.9752

wtime 0.98357 1.01670 0.96409 1.0034

gtypeAuto:dtypeHOD 0.09339 10.70738 0.01227 0.7108
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> hodg.surv <- with(hodg2,Surv(time,delta))

> hodg.cox1 <- coxph(hodg.surv~gtype*dtype+score+wtime,data=hodg2)

> summary(hodg.cox1)

Concordance= 0.776 (se = 0.061 )

Rsquare= 0.527 (max possible= 0.983 )

Likelihood ratio test= 32.15 on 5 df, p=5.539e-06

Wald test = 27.19 on 5 df, p=5.232e-05

Score (logrank) test = 37.7 on 5 df, p=4.325e-07
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Proportionality

We first graph the survival function for the four
combinations of disease type and graft type.

We graph the complimentary log-log survival for the
four groups.

Then we graph the observed vs. expected survival
functions.

There appear to be problems with proportionality.
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plot1 <- function(){

plot(survfit(hodg.surv~dtype+gtype,data=hodg2),xlim=c(0,600),col=1:4,lwd=2)

legend("topright",c("NHL Allo","NHL Auto","HOD Allo","HOD Auto"),col=1:4,lwd=2)

title("Survival Curves for HOD/NHL and Allo/Auto Grafts")

}

plot2 <- function(){

plot(survfit(hodg.surv~dtype+gtype,data=hodg2,type="fleming"),

col=1:4,lwd=2,fun="cloglog")

legend("topleft",c("NHL Allo","NHL Auto","HOD Allo","HOD Auto"),col=1:4,lwd=2)

title("Complimentary Log-Log Survival Curves")

}

plot3 <- function(){

# score and wtime set to mean values for disease and graft types

plot(survfit(hodg.surv~dtype+gtype,data=hodg2),xlim=c(0,600),col=1:4,lwd=2)

lines(survfit(hodg.cox1,data.frame(gtype=c("Allo","Auto","Allo","Auto"),

dtype=c("NHL","NHL","HOD","HOD"),score=c(75,76,56,85),

wtime=c(17,23,59,58)),data=hodg2),col=1:4,lwd=2,lty=2)

legend("topright",c("NHL Allo","NHL Auto","HOD Allo","HOD Auto"),col=1:4,lwd=2)

title("Observed and Expected Survival Curves")

}
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Types of Residuals

It is often hard to make a decision from graph
appearances, though the process can reveal much.

Some diagnostic tests are based on residuals as with
other regression methods.

We use Schoenfeld residuals (via cox.zph) to test
for proportionality.

We use Cox-Snell residuals to test for goodness of
fit.

We use martingale residuals to look for non-linearity.

We can also look at dfbeta for influence.
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residuals.coxph {survival} R Documentation

Calculate Residuals for a coxph Fit

Description

Calculates martingale, deviance, score, or Schoenfeld residuals for a

Cox proportional hazards model.

Usage

residuals(object,

type=c("martingale", "deviance", "score", "schoenfeld",

"dfbeta", "dfbetas", "scaledsch","partial"),

collapse=FALSE, weighted=FALSE, ...)

Arguments

object an object inheriting from class coxph, representing a fitted Cox

regression model. Typically this is the output from the coxph function.
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residuals(object,

type=c("martingale", "deviance", "score", "schoenfeld",

"dfbeta", "dfbetas", "scaledsch","partial"),

collapse=FALSE, weighted=FALSE, ...)

Arguments

object an object inheriting from class coxph, representing a fitted Cox

regression model. Typically this is the output from the coxph function.

type character string indicating the type of residual desired.

Possible values are "martingale", "deviance", "score", "schoenfeld",

"dfbeta"’, "dfbetas", and "scaledsch".

Only enough of the string to determine a unique match is required.
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For martingale and deviance residuals, the returned object is a vector with one
element for each subject (without collapse). For score residuals it is a matrix
with one row per subject and one column per variable. The row order will match
the input data for the original fit. For Schoenfeld residuals, the returned object
is a matrix with one row for each event and one column per variable. The rows
are ordered by time within strata, and an attribute strata is attached that
contains the number of observations in each strata. The scaled Schoenfeld
residuals are used in the cox.zph function.

The score residuals are each individual’s contribution to the score vector. Two
transformations of this are often more useful: dfbeta is the approximate change
in the coefficient vector if that observation were dropped, and dfbetas is the
approximate change in the coefficients, scaled by the standard error for the
coefficients.
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Schoenfeld Residuals

There is a Schoenfeld residual for each subject i with an
event (not censored) and for each predictor xk . At the
event time t for that subject, there is a risk set R , and
each subject j in the risk set has a risk coefficient θj and
also a value xjk of the predictor. The Schoenfeld residual
is the difference between xik and the risk-weighted
average of all the xjk over the risk set.

rSik = xik −
∑

k∈R xjkθk∑
k∈R θk
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Schoenfeld Residuals

This is a measure of how typical the individual subject is
with respect to the covariate at the time of the event.
Since subjects should fail more or less uniformly
according to risk, the Schoenfeld residuals should be
approximately level over time, not increasing or
decreasing. We can test this with the correlation with
time on some scale, which could be the time itself, the
log time, or the rank in the set of failure times. The
default is to use the KM curve as a transform, which is
similar to the rank but deals better with censoring.
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> hodg.zph <- cox.zph(hodg.cox1)

> print(hodg.zph)

rho chisq p

gtypeAuto 0.3796 4.58093 0.0323

dtypeHOD 0.2310 1.38525 0.2392

score -0.1960 1.24354 0.2648

wtime 0.0202 0.00666 0.9350

gtypeAuto:dtypeHOD -0.3826 5.05625 0.0245

GLOBAL NA 10.19554 0.0699

pdf("hodgzph1.pdf")

plot(hodg.zph[1])

dev.off()

pdf("hodgzph2.pdf")

plot(hodg.zph[2])

dev.off()

pdf("hodgzph3.pdf")

plot(hodg.zph[3])

dev.off()

pdf("hodgzph4.pdf")

plot(hodg.zph[4])

dev.off()

pdf("hodgzph5.pdf")

plot(hodg.zph[5])

dev.off()
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From the correlation test, the graft type and its
interaction with disease type induce modest but
statistically significant non-proportionality.

The sample size here is relatively small (26 events in
43 subjects). If the sample size is large, very small
amounts of non-proportionality can induce a
significant result.

As time goes on, autologous grafts are
over-represented at their own event times, but those
from HOD patients become less represented.

Both the statistical tests and the plots are useful.
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Goodness of Fit using the Cox-Snell
Residuals

Suppose that the i th individual has a survival time Ti

which has survival function Si(t), meaning that
Pr(Ti > t) = Si(t). Then Si(Ti) has a uniform
distribution on (0, 1).

Pr(Si(Ti) ≤ u) = Pr(Ti > S−1
i (u))

= Si(S
−1
i (u))

= u
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Goodness of Fit using the Cox-Snell
Residuals

Also, if U has a uniform distribution on (0, 1), then what
is the distribution of − ln(U)?

Pr(− ln(U) < x) = Pr(U > exp(−x))

= 1− e−x

which is the CDF of an exponential distribution with
parameter λ = 1.
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Goodness of Fit using the Cox-Snell
Residuals

So, rCSi = Λ̂i(ti) = − ln[Ŝi(ti)] = − ln[Ŝ(ti |covariates)]
should have an exponential distribution with constant
hazard λ = 1 if the estimate Ŝi is accurate, which means
that these values should look like a censored sample from
this exponential distribution. These values are called
generalized residuals or Cox-Snell residuals.
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Martingale Residuals

The martingale residuals are a slight modification of the
Cox-Snell residuals. If the censoring indicator is δi , then

rMi = δi − rCSi

These residuals can be interpreted as an estimate of the
excess number of events seen in the data but not
predicted by the model. We will use these to examine
the functional form of covariates.
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Martingale

Originally, a martingale referred to a betting strategy
where you bet $1 on the first play, then you double the
bet if you lose and continue until you win. This seems
like a sure thing, because at the end of each series when
you finally win, you are up $1. For example,
−1− 2− 4− 8 + 16 = 1. But this assumes that you have
infinite resources. Really, you have a large probability of
winning $1, and a small probability of losing everything
you have, kind of the opposite of a lottery.
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Martingale

In probability, a martingale is a sequence of random
variables such that the expected value of the next event
at any time is the present observed value, and that no
better predictor can be derived even with all past values
of the series available. At least to a close approximation,
the stock market is a martingale. Under the assumptions
of the proportional hazards model, the martingale
residuals ordered in time form a martingale.
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Using Martingale Residuals

Martingale residuals can be used to examine the
functional form of a numeric variable. We fit the model
without that variable and compute the martingale
residuals. We then plot these martingale residuals
against the values of the variable. We can see curvature,
or a possible suggestion that the variable can be
discretized. We will use this to examine the score and
wtime variables in the hodg data set.
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hodg.mart <- residuals(hodg.cox1,type="martingale")

hodg.cs <- hodg$delta-hodg.mart

plot1r <- function(){

surv.csr = survfit(Surv(hodg.cs,hodg2$delta)~1,type="fleming-harrington")

plot(surv.csr,fun="cumhaz")

abline(0,1)

title("Cumulative Hazard of Cox-Snell Residuals")

}

plot2r <- function(){

mres <- residuals(coxph(hodg.surv~gtype*dtype+wtime,data=hodg2),type="martingale")

plot(hodg2$score,mres,xlab="Karnofsky Score",ylab="Martingale Residuals")

lines(lowess(hodg2$score,mres))

title("Martingale Residuals vs. Karnofsky Score")

}
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hodg.mart <- residuals(hodg.cox1,type="martingale")

hodg.cs <- hodg$delta-hodg.mart

plot3r <- function(){

mres <- residuals(coxph(hodg.surv~gtype*dtype+score,data=hodg2),type="martingale")

plot(hodg2$wtime,mres,xlab="Waiting Time",ylab="Martingale Residuals")

lines(lowess(hodg2$wtime,mres))

title("Martingale Residuals vs. Waiting Time")

print(head(cbind(hodg2$wtime,mres)[order(hodg2$wtime,decreasing=T),]))

}

mres

41 171 -0.6099433

15 102 -1.2045188

43 98 -1.0541449

28 84 -0.5916094

40 84 -0.5065709

29 73 0.9774249
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The line with slope 1
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using this procedure.
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The line is almost
straight. It could be
some modest
transformation of the
Karnofsky score would
help, but it might not
make much difference.
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The line could suggest
a step function. To see
where the drop is, we
can look at the largest
waiting times and the
associated martingale
residual.
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hodg.mart <- residuals(hodg.cox1,type="martingale")

hodg.cs <- hodg$delta-hodg.mart

plot3r <- function(){

mres <- residuals(coxph(hodg.surv~gtype*dtype+score,data=hodg),type="martingale")

plot(hodg$wtime,mres,xlab="Waiting Time",ylab="Martingale Residuals")

lines(lowess(hodg$wtime,mres))

title("Martingale Residuals vs. Waiting Time")

print(head(cbind(hodg$wtime,mres)[order(hodg$wtime,decreasing=T),]))

}

mres

41 171 -0.6099433

15 102 -1.2045188

43 98 -1.0541449

28 84 -0.5916094

40 84 -0.5065709

29 73 0.9774249

The martingale residuals are all negative for wtime >83 and

positive for the next smallest value.

A reasonable cut-point is 80 days.

We reformulate the model with dichotomized wtime.
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wt2 <- cut(hodg2$wtime,c(0,80,200),labels=c("short","long"))

hodg.cox2 <- coxph(hodg.surv~gtype*dtype+score+wt2,data=hodg2)

print(drop1(hodg.cox1,test="Chisq"))

Model:

hodg.surv ~ gtype * dtype + score + wtime

Df AIC LRT Pr(>Chi)

<none> 152.36

score 1 167.60 17.2365 3.3e-05 ***

wtime 1 153.64 3.2792 0.07016 .

gtype:dtype 1 155.80 5.4357 0.01973 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

print(drop1(hodg.cox2,test="Chisq")) #New model has better AIC

#and smaller p-values.

Model:

hodg.surv ~ gtype * dtype + score + wt2

Df AIC LRT Pr(>Chi)

<none> 149.03

score 1 168.64 21.6042 3.351e-06 ***

wt2 1 153.64 6.6081 0.01015 *

gtype:dtype 1 152.00 4.9697 0.02580 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Checking for Outliers and Influential
Observations

We will check for outliers using the deviance residuals.
The martingale residuals show excess events or the
opposite, but highly skewed, with the maximum possible
value being 1, but the smallest value can be very large
negative. Martingale residuals can detect unexpectedly
long-lived patients, but patients who die unexpectedly
early show up only in the deviance residual. Influence will
be examined using dfbeta in a similar way to linear
regression, logistic regression, or Poisson regression.
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hodg.mart <- residuals(hodg.cox2,type="martingale")

hodg.dev <- residuals(hodg.cox2,type="deviance")

hodg.dfb <- residuals(hodg.cox2,type="dfbeta")

hodg.preds <- predict(hodg.cox2) #linear predictor

plotr21 <- function(){

plot(hodg.preds,hodg.mart,xlab="Linear Predictor",ylab="Martingale Residual")

title("Martingale Residuals vs. Linear Predictor")

}

plotr22 <- function(){

plot(hodg.preds,hodg.dev,xlab="Linear Predictor",ylab="Deviance Residual")

title("Deviance Residuals vs. Linear Predictor")

}

plotr23 <- function(){

plot(hodg.dfb[,1],xlab="Observation Order",ylab="dfbeta for Graft Type")

title("dfbeta Values by Observation Order for Graft Type")

}

.........
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Martingale Residuals vs. Linear Predictor

The smallest three
martingale residuals in
order are observations
1, 29, and 18.
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Deviance Residuals vs. Linear Predictor

The two largest
deviance residuals are
observations 1 and 29.
Worth examining.
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dfbeta Values by Observation Order for Graft Type

The smallest dfbeta for
graft type is
observation 1.
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dfbeta Values by Observation Order for Disease Type

The smallest two dfbeta
values for disease type
are observations 1 and
16.
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dfbeta Values by Observation Order for Karnofsky Score

The two highest dfbeta
values for score are
observations 1 and 18.
The next three are
observations 17, 29,
and 19. The smallest
value is observation 2.
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dfbeta Values by Observation Order for Dichotomized Waiting Time

The two large values of
dfbeta for dichotomized
waiting time are
observations 15 and 16.
This may have to do
with the discretization
of waiting time.
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dfbeta Values by Observation Order for Graft by Disease

The two largest values
are observations 1 and
16. The smallest value
is observation 35.
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Table: Observations to Examine by Residuals and Influence

Martingale Residuals 1, 29, 18
Deviance Residuals 1, 29
Graft Type Influence 1
Disease Type Influence 1, 16
Karnofsky Score Influence 1, 18 (17, 29, 19)
Waiting Time Influence 15, 16
Graft by Disease Influence 1, 16, 35

The most important observations to examine seem to be
1, 15, 16, 18, and 29.
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> with(hodg,summary(time[delta==1]))

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.00 41.25 62.50 97.62 83.25 524.00

> with(hodg,summary(wtime))

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.0 16.0 24.0 37.7 55.5 171.0

> with(hodg,summary(score))

Min. 1st Qu. Median Mean 3rd Qu. Max.

20.00 60.00 80.00 76.28 90.00 100.00

> hodg.cox2

coef exp(coef) se(coef) z p

gtypeAuto 0.6651 1.9447 0.5943 1.12 0.2631

dtypeHOD 2.3273 10.2505 0.7332 3.17 0.0015

score -0.0550 0.9464 0.0123 -4.46 8.2e-06

wt2long -2.0598 0.1275 1.0507 -1.96 0.0499

gtypeAuto:dtypeHOD -2.0668 0.1266 0.9258 -2.23 0.0256

> hodg[c(1,15,16,18,29),]

gtype dtype time delta score wtime

1 1 1 28 1 90 24 #early death, good score, low risk grp

15 1 2 77 1 60 102 #high risk grp, long wait, poor score

16 1 2 79 1 70 71 #high risk grp, short wait, poor score

18 2 1 53 1 90 17 #early death, good score, med risk grp

29 2 2 30 1 90 73 #early death, good score, med risk grp
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Action Items

Unusual points may need checking, particularly if
the data are not completely cleaned. In this case,
observations 15 and 16 may show some trouble with
the dichotomization of waiting time, but it still may
be useful.

The two largest residuals seem to be due to
unexpectedly early deaths, but unfortunately this
can occur.
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If hazards don’t look proportional, then we may
need to use strata, between which the base hazards
are permitted to be different. For this problem, the
natural strata are the two diseases, because they
could need to be managed differently anyway.

A main point that we want to be sure of is the
relative risk difference by disease type and graft
type.
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Table: Linear Risk Predictors for Lymphoma

Disease Graft Type Linear Predictor
Non-Hodgkin’s Allogenic 0
Non-Hodgkin’s Autologous 0.6651
Hodgkin’s Allogenic 2.3273
Hodgkin’s Autologous 0.9256

For Non-Hodgkin’s, the allogenic graft is better. For
Hodgkin’s, the autologous graft is much better.
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