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Time to Event Data

Survival Analysis is a term for analyzing
time-to-event data.

This is used in clinical trials, where the event is
often death or recurrence of disease.

It is used in engineering reliability analysis, where
the event is failure of a device or system.

It is used in insurance, particularly life insurance,
where the event is death.

David M. Rocke Introduction to Survival Analysis May 9, 2017 2 / 38



Time to Event Data

The distribution of ‘failure’ times is asymmetric and
can be long-tailed.

The base distribution is not normal, but exponential.

There are usually censored observations, which are
ones in which the failure time is not observed.
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Time to Event Data

Usually, these are right-censored, meaning that we
know that the event occurred after some known
time t, but we don’t know the actual event time, as
when a patient is still alive at the end of the study.

Observations can also be left-censored, meaning we
know the event has already happened at time t, or
interval-censored, meaning that we only know that
the event happened between times t1 and t2.

Analysis is difficult if censoring is associated with
treatment.
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Right Censoring

Patients are in a clinical trial for cancer, some on a
new treatment and some on standard of care.

Some patients in each group have died by the end
of the study. We know the survival time (say from
diagnosis).

Patients still alive at the end of the study are right
censored.

Patients who are lost to follow-up or withdraw from
the study may be right-censored.
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Left and Interval Censoring

An individual tests positive for HIV.

If the event is infection with HIV, then we only
know that it has occurred before the testing time t,
so this is left censored.

If an individual has a negative HIV test at time t1

and a positive HIV test at time t2, then the
infection event is interval censored.
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Basic Quantities and Models

The probability density function f (x) is defined as with
any continuous distribution. For any short interval of
time, it can be thought of as the chance that the event
will occur in that short interval. The cumulative
distribution function is

F (x) = Pr(X ≤ x) =

∫ x

0

f (x)dx

For survival data, a more relevant quantity is the survival
function

S(x) = 1− F (x) = Pr(X > x) =

∫ ∞

x

f (x)dx
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The Hazard Function

Another important function is the hazard function, which
is the probability that the event will occur in the next
very short interval, given that it has not occurred yet.

h(x) = lim
∆x→0

Pr[x ≤ X < x + ∆x |X ≥ x ]

∆x
= f (x)/S(x)

f (x) = −dS(x)

dx

h(x) = −d ln(S(x))

dx
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Cumulative Hazard

h(x) = −d ln(S(x))

dx
The cumulative hazard function is

H(x) =

∫ x

0

h(x)dx = − ln(S(x))

This function is easier to estimate than the hazard
function, and we can then approximate the hazard
function by the approximate derivative of the cumulative
hazard.
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Exponential Distribution

The exponential distribution is the base distribution
for survival analysis.

The distribution has a constant hazard λ

The mean survival time is λ−1
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f (x) = λe−λx

ln(f (x)) = lnλ− λx
F (x) = 1− e−λx

S(X ) = e−λx

ln(S(x)) = −λx

h(x) = − d

dx
ln(S(x))

= − d

dx
(−λx)

= λ
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Estimation of λ

Suppose we have m exponential survival times of
t1, t2, . . . , tm and k right-censored values at
u1, u2, . . . , uk . The log-likelihood of an observed survival
time ti is lnλ− λti and the likelihood of a censored
value is the probability of that outcome (survival greater
than uj) so the log-likelihood is −λuj . Let T =

∑
ti and

U =
∑

uj . Then the log likelihood is

m lnλ− (T + U)λ
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m lnλ− (T + U)λ

is maximized when the derivative is 0, that is when

0 = m/λ− (T + U)

λ = m/(T + U)

1/λ = (T + U)/m

It can be show that the variance of λ̂ is asymptotically
λ2/m, depending only on the number of uncensored
observations. This is generally true.
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Mean Residual Life

The mean lifetime with a survival distribution f (x) is∫ ∞

0

xf (x)dx

For the exponential distribution we know that the mean
is λ−1 The mean residual life after survival to time x is

mrl(x) =

∫ ∞

x

(u − x)f (u)du/

∫ ∞

x

f (u)du

=

∫ ∞

x

S(u)du/S(x)

For the exponential, the mean residual life is also λ−1
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Other Parametric Survival Distributions

Any density on [0,∞) can be a survival distribution,
but the most useful one are all skew right.

The commonest generalization of the exponential is
the Weibull.

Other common choices are the gamma, log-normal,
log-logistic, Gompertz, inverse Gaussian, and Pareto.

Most of what we do going forward is
non-parametric, but sometimes these parametric
distributions provide a useful approach.
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Weibull Distribution

f (x) = αλxα−1e−λx
α

h(x) = αλxα−1

S(x) = e−λx
α

E (X ) = Γ(1 + 1/α)/λ1/α

When α = 1 this is the exponential. When α > 1 the
hazard is increasing and when α < 1 the hazard is
decreasing. This provides more flexibility than the
exponential.
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Nonparametric Survival Analysis

Mostly, we work without a parametric model.
The first task is to estimate a survival function from
data listing survival times, and censoring times for
censored data.
For example one patient may have relapsed at 10
months. Another might have been followed for 32
months without a relapse having occurred
(censored).
The minimum information we need for each patient
is a time and a censoring variable which is 1 if the
event occurred at the indicated time and 0 if this is
a censoring time.
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KM drug6mp Data

Clinical trial in 1963 for 6-MP treatment vs. placebo for Acute
Leukemia in 42 children. Pairs of children matched by remission
status (1 = partial or 2 = complete) and randomized to 6-MP or
placebo. Followed until relapse or end of study. All of the placebo
group relapsed, but some of the 6-MP group were censored.

> library(KMsurv)

> data(drug6mp)

> drug6mp

pair remstat t1 t2 relapse

1 1 1 1 10 1

2 2 2 22 7 1

3 3 2 3 32 0
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KM drug6mp Data

drug6mp data

Description

The drug6mp data frame has 21 rows and 5 columns.

Format

This data frame contains the following columns:

pair pair number

remstat Remission status at randomization (1=partial, 2=complete)

t1 Time to relapse for placebo patients, months

t2 Time to relapse for 6-MP patients, months

relapse Relapse indicator (0=censored, 1=relapse) for 6-MP patients
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Descriptive Statistics

The average time in each group is not useful. Some
of the 6-MP patients have not relapsed at the time
recorded, while all of the placebo patients have
relapsed.

The median time is not really useful either because
so many of the 6-MP patients have not relapsed
(12/21).

Both are biased down in the 6-MP group.
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Descriptive Statistics

We can compute the average hazard rate, which is
the estimate of the exponential parameter: number
of relapses divided by the sum of the times.

For the placebo, that is just the reciprocal of the
mean time = 1/8.667 = 0.115.

For the 6-MP group this is 9/359 = 0.025

The estimated average hazard in the placebo group
is 4.6 times as large.
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The Kaplan-Meier Product Limit
Estimator

The survival function for the placebo patients is
easy to compute. For any time t in months, S(t) is
the fraction of patients with times greater than t.

For the 6-MP patients, we cannot ignore the
censored data because we know that the time to
relapse is greater than the censoring time.

The procedure we usually use is the Kaplan-Meier
product-limit estimator of the survival function.
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The Kaplan-Meir estimator is a step function (like
the empirical cdf), which changes value only at the
event times, not at the censoring times.

At each event time t, we compute the at-risk group
size Y , which is all those observations whose event
time or censoring time is at least t.

If d of the observations have an event time (not a
censoring time) of t, then the group of survivors
immediately following time t is reduced by the
fraction

Y − d

Y
= 1− d

Y
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If the event times are ti with events per time of di
(1 ≤ i ≤ k), then

Ŝ(t) =
∏
ti<t

[1− di/Yi ]

where Yi is the set of observations whose time (event or
censored) is ≥ ti , the group at risk at time ti .
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If there are no censored data, and there are n data
points, then just after (say) the third event time

Ŝ(t) =
∏
ti<t

[1− di/Yi ]

= [
n − d1

n
][
n − d1 − d2

n − d1
][
n − d1 − d2 − d3

n − d1 − d2
]

=
n − d1 − d2 − d3

n

the usual empirical cdf estimate.
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require(KMsurv)

data(drug6mp)

plot(survfit(Surv(drug6mp$t2,drug6mp$relapse)~1))

title("Kaplan-Meier Survival Curve for 6-MP Patients")

time12 <- c(drug6mp$t1,drug6mp$t2)

cens12 <- c(rep(1,21),drug6mp$relapse)

treat12 <- rep(1:2,each=21)

pairs12 <- rep(1:21,2)

plot(survfit(Surv(time12,cens12)~treat12),col=1:2)

title("Kaplan-Meier Survival Curve for 6-MP and Placebo Patients")

plot(survfit(Surv(time12,cens12)~treat12),conf.int=T,col=1:2)

title("Kaplan-Meier Survival Curve for 6-MP and Placebo Patients")
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Time At Risk Relapses Censored KM Factor KM Curve
6 21 3 1 0.857 0.857
7 17 1 0 0.941 0.807
9 16 0 1 1 0.807

10 15 1 1 0.933 0.753
11 13 0 1 1 0.753
13 12 1 0 0.917 0.690
16 11 1 0 0.909 0.627
17 10 0 1 1 0.627
19 9 0 1 1 0.627
20 8 0 1 1 0.627
22 7 1 0 0.857 0.538
23 6 1 0 0.833 0.448
25 5 0 1 1 0.448
32 4 0 2 1 0.448
34 2 0 1 1 0.448
35 1 0 1 1 0.448
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At time 6 months, there are 21 patients at risk. At t = 6
there are 3 relapses and 1 censored observations. The
Kaplan-Meier factor is (21− 3)/21 = 0.857. The number
at risk for the next time (t = 7) is 21− 3− 1 = 17.

At time 7 months, there are 17 patients at risk. At t = 7
there is 1 relapse and 0 censored observations. The
Kaplan-Meier factor is (17− 1)/17 = 0.941. The Kaplan
Meier estimate is 0.857× 0.941 = 0.807. The number at
risk for the next time (t = 9) is 17− 1 = 16.
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time12 <- c(drug6mp$t1,drug6mp$t2)

cens12 <- c(rep(1,21),drug6mp$relapse)

treat12 <- rep(1:2,each=21)

pairs12 <- rep(1:21,2)

print(survdiff(Surv(time12,cens12)~treat12))

N Observed Expected (O-E)^2/E (O-E)^2/V

treat12=1 21 21 10.7 9.77 16.8

treat12=2 21 9 19.3 5.46 16.8

Chisq= 16.8 on 1 degrees of freedom, p= 4.17e-05

print(survdiff(Surv(time12,cens12)~treat12+strata(pairs12)))

N Observed Expected (O-E)^2/E (O-E)^2/V

treat12=1 21 21 13.5 4.17 10.7

treat12=2 21 9 16.5 3.41 10.7

Chisq= 10.7 on 1 degrees of freedom, p= 0.00106
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Package Survival

Surv

Create a survival object, usually used as a response variable in a model formula.

Usage

Surv(time, event)

Arguments

time for right censored data, this is the follow up time.

event The status indicator, normally 0=alive, 1=dead.

Also TRUE/FALSE (TRUE = death) or 1/2 (2=death).

The event indicator can be omitted,

in which case all subjects are assumed to have an event.

-----

Surv(drug6mp$t2,drug6mp$relapse)
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Package Survival

survfit

This function creates survival curves from either a formula

(e.g. the Kaplan-Meier), a previously fitted Cox model,

or a previously fitted accelerated failure time model.

Usage

survfit(formula, ...)

Arguments

formula either a formula or a previously fitted model

-----

plot(survfit(Surv(drug6mp$t2,drug6mp$relapse)~1))

plot(survfit(Surv(time12,cens12)~treat12))
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Package Survival

survdiff

Tests if there is a difference between two or more survival curves.

Usage

survdiff(formula, data, subset, na.action, rho=0)

Arguments

formula a formula expression as for other survival models,

of the form Surv(time, status) ~ predictors.

A strata term may be used to produce a stratified test.

rho Type of test. Default is the Mantel-Haenszel test.

-------

print(survdiff(Surv(time12,cens12)~treat12))

print(survdiff(Surv(time12,cens12)~treat12+strata(pairs12)))
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