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P———

RNA-Seq

* Gene expression is the transcription of the DNA in a
gene into mRNA, which (in many cases) is later
translated into a protein.

* We can measure expression of a single gene with PCR
or other assays.

* Gene expression arrays measure expression of many
genes simultaneously using spots each of which
contains a matching sequence to the gene sequence to
be detected.

* But this can only detect what we already suspected
might be there.
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P————

RNA-Seq

* For RNA-Seq, the RNA in the sample is reverse
transcribed into the corresponding DNA sequence.

* Then the DNA fragments are sequenced (in an NGS
sequencer, usually [llumina )

* Each fragment is mapped to the reference genome

* The data to be analyzed are the number of fragments
mapping to each gene in a table where the columns are
samples and the rows are genes.
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RNA-Seq

* This mapping can be complex

* We can choose to estimate isoforms/splice variants or
not

* We can choose how to handle ambiguous reads (omit
or spread across genes)

* We can then use statistical analysis to determine when
there is significantly more expression in one condition
or another.

* This may or may not be better than an expression array
depending on goals.
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Analysis of RNA-Seq Data

* For each gene/exon/isoform (we will say gene from
now on), and for each sample, we have a count of
fragments mapping to that gene.

* In principle, we need to test whether the counts from
one group are significantly larger than another.

* Or we may have more than one factor or variable that
could be associated.

* In practice, we may (probably) choose to normalize
the samples first, and may choose to import some
information across genes.
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Read Counts

* We assume that bioinformatic analysis has been
conducted on the original RNA-Seq data for each
sample and converted into reads K;; per gene i per
sample j.

* Since each K;; is a count, we might first try the
assumption that the underlying distribution is
Poisson.

* Examination of RNA-Seq data sets shows that data are
over-dispersed (see next slide) and so the Poisson
assumption cannot hold.
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Poisson Problems

* The Poisson distribution has a single parameter A, which
controls both the mean A and the variance A.

e EX)=2A
e V(X) =2
e If the sample standard deviation is not approximately equal
to the mean, then one solution is the over-dispersed

Poisson:
e E(X)=A
e V(X) = 0A

* But empirically, the variance appears to rise quadratically
with the mean, not linearly with the mean.

* This an happen via a mixture of Poissons.
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Poisson Variability

* [s at best the technical variation
* Even then, the approximation is poor

* A better model for the overall experimental variability is a
perhaps mixture of Poissons.

* Each sample under the same condition has a different
actual transcript count before sampling, which means that
A;; for gene i and sample j differs from sample to sample,
even when these are replicates under the same conditions.

* So the actual observed mapped reads count for a given gene
across samples in the same condition can better be
considered as an approximate mixture of Poisson random
variables.
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The Negative Binomial

* Given a series of Bernoulli trials (coin flips) with
chance of success p on each trial, if we let X be the
number of successes at the time when rt" failure

occurs, then X has a negative binomial distribution
NB(r;p).

* For example, if r is 3, and the sequence is
SSFSFSSSSESSE, then X is 7 and the length of the
sequence is 10.

* The mean of X is pr/(1-p) and the variance is pr/(1-p)>.

¢ In this formulation, r is known and p is the only
unknown parameter.
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The Negative Binomial

* An more useful formulation for our purpose is that a

negat

ive binomial can be written as a gamma mixture

of Poisson random variables.

e If an observed count is Poisson, with a random mean A

that @
distri]

iffers from time to time and which is gamma
buted across sample replicates, then the count

overal
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Gamma Mixtures

* The gamma distribution (same as the chi-squared) is
an asymmetric distribution defined on [0,o0) with two
parameters, the shape k and the scale 6. The mean is
kO and the variance is k0>.

* NB(r; p) is produced by a gamma mixture of Poissons
with k=rand 6 = p/(1-p).

* Otherwise put, if we can estimate the mean pand
variance o2, then the parameters of the negative
binomial can be determined from those.
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Negative Binomial Parameters

* The negative binomial distribution can be
parametrized in a number of ways.

* In each case, it requires two parameters.

* For the original definition in terms of waiting times,
the parameter r is set and the parameter p is
estimated.

* If we parametrize the negative binomial by the mean p
and the dispersion factor 0, then
e E(X)=p
e V(X) =+ 0 p2
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Negative Binomial Parametrizations
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Existing Methods

* Existing methods often contain complex combinations or
filtering, normalization, transformation, and variance
estimation before any statistical tests are performed.

* The methods are sometimes poorly documented and can
change rapidly and often substantially between versions.

* The results of different popular methods such as DESeq2,
edgeR, and limma-voom can differ substantially.

* It appears that some methods produce large numbers of
false positives.
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DESeq2 and edgeR

* These methods share many similarities.
* Significance tests are based on the negative binomial

likelihood.

* Estimation of the mean for each group is easy.

* The shared dispersion factor 0 can be estimated from each
gene separately, or from a smoothed curve relating the
mean and variance, or from a compromise.

* DESeq2 is primarily due to Mike Love, Simon Anders, and
Wolfgang Huber.

* edgeR is primarily due to Mark Robinson, Gordon Smyth
and Davis McCarthy
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limma

* limmaisa package originally developed by Gordon Smyth
for gene expression arrays.

* It conducts a linear model analysis for each gene, and by
default uses empirical Bayes shrinkage of the MSFE'’s.

* The voom function was developed for RNA-Seq data; it
weights observations using the negative binomial variance
function, but does not use the likelihood as such.

* Alternatively, one can transform the data to approximately
stable variance.

e In either case, inference is based on standard linear
models.
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Variance Stabilizing Transformation

E(X)=u
V(X)=pu+0u’
Y i

V(Y)~c = f'(u)'V(X) = f'(u)" (u+6u*)
F(w) ~c(u+0u) "
F(X) = 1n[x+\/x2 X +6" /2]

We choose @ so that the regression of variance on mean has zero slope.
This will use lots of means and variances or possibly means and MSE's.

We do not have to directly estimate 6.
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MontPick Data

* RNA-Seq of RNA from lymphoblastoid cell lines from 129
individuals from the HapMap project.

* Montgomery data: 60 European heritage individuals from Utah
(CEU), 33 females and 27 males.

* Pickrell data: 69 Yoruba heritage individuals of from Nigeria
(YRI), 40 females and 29 males.

* 52,580 unique genes of which 8,124 had a count of at least 129
across the 129 samples.

» This data set has been used in other comparisons

* First, we compare four methods on this data set: DESecLz, edgeR-
glm, limma-voom, and limma with a prior variance-stabilizing
transformation.

* Later we construct data sets where the null hypothesis is true.
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Results of FuII Data Analysis

Population Interaction
(CEU/YRI)

edgeR 4496

DESeq2 4495 503 66
limma-voom 4392 134 13
limma-trans 4536 193 3

* Number of significant genes/8142 at 10% FDR.

» Total sample size is 129

 Largest difference is in the Sex factor and interaction.

* Only a small number of differences by sex in B-cell gene
expression would be expected.

* Most RNA-Seq experiments have at most 2-5 replicates per
group, not 60, and usually two groups.
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Power to Detect or False Positives?

* Given the large sample size, the similarity in
significant gene numbers by population is not
surprising.

* But there are many more genes significant for sex in

the two negative binomial based methods, and an even
larger disparity for the interaction term.

* We may naively think that more genes detected is
better.

* But this is only true if most of these are true positives.

* To evaluate the methods, we need to measure the
performance when the null hypothesis is true.
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Null Behavior

* 10,000 randomly selected subsets of size 2n out of the 60
CEU samples.

* In each subset, n assigned to “treatment” and n to “control”
at random.

* The null hypothesis is on the average true.

* Given the 8,124 genes with large enough counts, we would
expect about 0.01% to be significant at the p = 0.0001 = 104
level.

* We have 10,000 tests for each gene, so there should be
about 1 rejection per gene for each method, and 8,124
rejections overall for each method

* We did this for n = 3, 5, 10, and 30.
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g!ean Number Significant at

B eal vt - 5
MontPick Data; Null Hypothesis is True

Expecte:

edgeR 13.36 0.81 16.44
DESeQ?2 10.52 0.81 12.95
I Imma-voom 1.06 0.81 1.31

I imma-trans 0.43 0.81 0.53
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Anomalous Small p-values

* Many of the p-values for the negative binomial likelihood
methods are very small. The numbers below are from
edgeR with n = 3.

* Out of 8124 x 10,000 tests, there should be about 81 less
than 10, but there are actually 25,390.

® There should be around 0.8 less than 108, but there are
actually 7,325.

* There should be almost none less than 107°, but there are
actually 2,843.

* The smallest p-value is 3 x 1075 For a t on 4df to reach this
p-value would require separation by 7 trillion standard
deviations.
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Important Factors?

* These methods share some features but differ in their
implementation.

* All of them treat the data as negative binomial, or at least
use the variance-mean relationship.

* They may use a test based on the negative binomial
distribution, but limma-voom and limma-trans uses
standard regression/anova with variance-based weights

* Since sample sizes tend to be small, they all have the
possibility to replace the variance estimate from a given
gene with a smoothed estimate based on all the genes.

* Normalization may be needed due to the differing total
numbers of reads and other factors

March 18, 2016 UVA Seminar RNA-Seq 28



Factors That May Cause False Positives

* Normalization procedure

e Normalization driven by high-abundance transcripts can cause
spurious significance of low abundance ones.

e May need different normalization for high and low counts
* Variance estimation

e Many methods “borrow strength” from other genes to get “better”
variance estimates, which involves shrinking variances or dispersion
factors towards a central tendency.

e This may cause bias though increasing power
e Statistical test used
e Many choices
* Nature of the data
e May require filtering to avoid too many zero or low count situations.
e May not be negative binomial.
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Which Genes have High FP Rate?

* Some have conjectured that false positive rates will be
high for genes with low counts, but this turns out not
to be correct.

* All of the methods shown have rates of false positives
that are low when the mean and dispersion factor are
low, and high when the mean and dispersion factor are
high.

* We show this, and later discuss the source of this
phenomenon.
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What Happens for Larger n?

» Although the false positives are fewer with larger
sample sizes, they still occur often at a factor of ten
more frequent than nominal
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%%e Real Distﬁbutlon%

Negative Binomial?

* We ran 10,000 trials at n = 3, 5, 10, and 30 using
negative binomial random variables.

* For each of the 8124 “genes,” we generated the data
using values of pand 6 that matched those of the CEU
data from the Montgomery half of the data set.

* Results differed very little from those of the resampled
real data.

® The problem is not the distribution of the data.
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Normalization

* Normalization is commonly used in differential
expression analysis with microarrays.

* Normalization for RNA-Seq is often couched in terms
like “library size” as if we should divide by the total
(mapped) fragment count

* Counts per Million in limma-voom for example

* This can be problematic because it depends on only a
few genes.

* Mostly, normalization in RNA-Seq is done with a
single constant per sample, though this is unusual
with expression arrays
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Library Size Normalization

» Using the total fragment count is problematic because
highly expressed genes will provide most of the fragments

* Four genes with expression 10,000, 100, 150, 200 in
condition A and 20,000, 100, 150, 200 in condition B.

* Normalized fragment counts use total fragment counts of
10,450 and 20,450 and can be normalized to 15,450

* Normalized fragment counts are 14,785, 148, 222, 296 in
condition A and 15,110, 76, 113, 151 in condition B, so up-
regulation of gene 1 has been turned into down-regulation
of the other three.

* Fold changes are 2.0, 1.0, 1.0, 1.0 before “normalization” and
1.02, 0.51, 0.51, 0.51 after.
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Normalization Methods

* Total count
* Quantile Normalization or other signal based methods

* Geometric normalization (Cuffdiff2/DESeq version)

e For each gene, compute the geometric mean of the total
fragment count across libraries

e Library “size” is the median across genes of the total fragment
count divided by the geometric mean fragment count.

 In our 4-gene example, the geometric means are 14,142, 100,
150, 200, the ratios for A are 0.707, 1, 1, 1 and for B are 1.414, 1, 1,
1, so the size factors are the medians, namely1and 1
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e Cuftdiff> first normalizes replicates under the same
conditions giving an internal library size of s;

* Then the arithmetic mean of the scaled gene counts for
each gene is used to compute an external library size of n;.

* This is a possible source of problems, the scale of which is
unknown
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Variance Estimation

* Many RNA-Seq experiments are small.
* Small studies have low power

* Very small p-values are needed to pass the false
discovery filter

* So the default for small studies is no results
* Suppose two means differ by one standard deviation
* With 10,000 genes, the Bonferroni level is 5x1077

* With two groups of 3, there are ~4df and 5x107
corresponds to almost 50 standard deviations
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Variance Estimation

* If we use tests that reference only the data from the
specific gene, then usually variance estimation is not a
problem.

* But with small sample sizes, the power is low, so there
is a temptation to “improve” the variance estimates by
smoothing or shrinkage.

* The variance of a negative binomial increases with the
mean in a way controlled by a variance parameter.

* We can smooth the plot of the sample variance vs. the
mean and use the smoothed estimate instead of the
per-gene estimate.
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~ A Poisson random variable with parameter A has

U=4

o 4

A negative binomial random variable can be seen as a
mixture of Poissons with varying A

u=A

o’ =A+64"

cilu =4 +0>50

if this 1s positive

If we smooth a plot of the variance or the square CV or 6 vs. the mean
we obtain an average estimate of & for the given value of

We can use the individual variance, the smoothed variance, or a compromise
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¢ =——— or 0 if negative

X
0 =ab + (1- a)é’ where 6 is from the smoothed plot
In practice, the Cox-Reid estimate is often used

instead of a method-of-moments estimate
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Variance Estimation

* The sample variance is an unbiased estimate of the
population variance

* A smoothed variance will be biased down or up depending
on the data point

* While this can reduce the MSE of estimating the variance,
it may increase false positives and false negatives for tests
based on those variance estimates

* This is a possible source of the differences in results in
various methods of analysis.

* It partially explains why large dispersion estimates have
many false positives since they are biased down by the
shrinkage.
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Generalized Linear Models

* The basic approach in edgeR and DESeqz2 is that of the
generalized linear model.

* The base distribution is supposed to be of an exponential
family, which means that the likelihood factors in a
particular way.

* There is a canonical parameter that is a function of the
mean and that can be modeled as a linear function of
predictors.

* There is a variance function that depends on the mean
only.

* Possible distributions include the normal, Poisson,
binomial, gamma, and inverse Gaussian.
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Poisson Distribution

f(x):/z e
X!

In( f (X)) = G

_ X —b(n)
=

71 =1n(A)
¢=1
a(g)=¢
b(77) =0
C(X,@) =—X—In(x!)
This 1s the definition of an exponential family distribution.

where
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Negative Binomial Distribution

YT
f(x;r,p)=[ ]px(l_p)r
X+r—1
ln(f(X;f,D))=X1n(p)+”n(1‘p)HHK X H
:ma_(—¢k;§77)+c(x,¢) where
el
/U—l_p
77=1n(|0)=1n( ”]
r+ u
d=r
a(p) =1

b(77) =—-rIin(1-¢")

o anH r —lﬂ
X

This 1s an exponential family distribution only 1f
r=1/6 is known.

Otherwise, b() is a function of & as well as 77 and 7 is a function of @ as well as u.
March 18, 2016 UVA Seminar RNA-Seq 49



P————

Consequences

* In practice, we are treating the dispersion factor 0 as
known, whereas it is estimated.

* For large enough samples, this will not matter, but it
seems two groups of 30 are not large enough.

e Tt is as if we are treating a t on 4df as if it were normal.

* This does not happen if we use a standard (non-
generalized) linear model, as in limma.

* Though some false positives can still occur, they are
much rarer.
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Quasi-Likelihood

* Quasi-likelihood is a generalization of these ideas. Instead of
assuming a likelihood we assume only a variance function.

* We can add a multiplicative dispersion parameter without
apparent harm (over-dispersed Poisson does not exhibit excess
false positives).

* All of the usual distributions except the negative binomial have a
quasi-likelihood formulation in which the variance function
contains a dispersion parameter only multiplicatively (like o> for
the normal).

e Poisson QL: V(X) = A
e Negative Binomial: V(X) = p+0u2
e Negative Binomial QL?: V(X) = ¢ (u+6p2) (not well identified)
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Does it Matter?

* In some contexts in the aggregate the excess false positives
may not seem to matter. If 8124 genes expect 1 false positive
at p = 104 (roughly FDR < 0.10), but there are 100 false
positives instead, and there are 2000 positives in total, then
this might increase the true FDR from 10% to 15%.

» If there are 500 total positives, then 100 extra false positives
is an inferential disaster.

* And if one of the extra false positives is a gene you care
about, then it is also a disaster.

* In any case, to argue that it does not matter when we get p-
values less than 107° in a small-sample null case seems to
show no respect for the concept of statistical testing.
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Conclusions

* Methods for RNA-Seq data that depend strongly on a
negative binomial assumption can generate large numbers
of false positives.

* Use of standard linear models after a data transformation
seems to work well. This depends only on the assumed
variance function and not even strongly on that (we could
use a started log instead).

» Shrinkage of variances or dispersions can also cause false
positives for high mean/high dispersion genes, though not
to the same extent.

e Two versions on bioarxiv—Ilatest one will follow this
month.
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